matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBinomialverteilung verstehen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Binomialverteilung verstehen
Binomialverteilung verstehen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung verstehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 So 11.10.2015
Autor: Jeany9

Aufgabe
Hallo zusammen,
Ich habe eine kurze Frage zur Binomialverteilung.

Allgemein ist die Binomialverteilung so definiert.
[mm] b_{p,n} (i) [/mm]
Also die WS für genau i FEHLERHAFTE Stücke in einer Menge der Größe n.

Wenn ich jetzt diese Formeln mit FEHLERFREI umschreiben will, bin ich mir nicht sicher ob ich da so richtig mache.

[mm] b_{1-p,n} (n-i) [/mm]?
Würde dann heißen die WS für genau n-i fehlerfreie Stücke in einer Menge der Größe n ??

Oder habe ich das falsch verstanden ?

        
Bezug
Binomialverteilung verstehen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 So 11.10.2015
Autor: M.Rex

Hallo


> Hallo zusammen,
> Ich habe eine kurze Frage zur Binomialverteilung.
> Allgemein ist die Binomialverteilung so definiert.
> [mm] b_{p,n} (i)[/mm]
> Also die WS für genau i FEHLERHAFTE Stücke
> in einer Menge der Größe n.

Wenn p die Wahrscheinlichkeit für einen Defekt in einem Stück ist, ja.

>

> Wenn ich jetzt diese Formeln mit FEHLERFREI umschreiben
> will, bin ich mir nicht sicher ob ich da so richtig mache.

>

> [mm] b_{1-p,n} (n-i) [/mm]?
> Würde dann heißen die WS für genau
> n-i fehlerfreie Stücke in einer Menge der Größe n ??

Ja, das stimmt, sofern ihr mit [mm] b_{p,n}(i) [/mm] die Binomialverteilung meint, also
[mm] b_{p,n}(i)=P(X=i)={n\choose i}\cdot p^{i}\cdot(1-p)^{n-i} [/mm]

Marius

Bezug
                
Bezug
Binomialverteilung verstehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:35 Mo 12.10.2015
Autor: luis52

  
>  > [mm] b_{1-p,n} (n-i) [/mm]?

>  > Würde dann heißen die WS für genau

>  > n-i fehlerfreie Stücke in einer Menge der Größe n ??

>  
> Ja, das stimmt, sofern ihr mit [mm]b_{p,n}(i)[/mm] die
> Binomialverteilung meint, also
>  [mm]b_{p,n}(i)=P(X=i)={n\choose i}\cdot p^{i}\cdot(1-p)^{n-i}[/mm]


Einspruch: Danach ist

[mm] $b_{1-p,n} (n-i)={n\choose n-i}\cdot (1-p)^{n-i}\cdot p^{i}=b_{p,n} [/mm] (i)$.

Gemeint ist wohl [mm] $b_{1-p,n} [/mm] (n)$, was auch Sinn macht, da dieser Ausdruck nicht mehr von $i$ abhaengt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]