matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBinomischer Satz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Binomischer Satz
Binomischer Satz < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomischer Satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 31.01.2015
Autor: sandroid

Aufgabe
Beweise den binomischen Satz induktiv mithilfe des Satzes:

[mm] \binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1} [/mm]

Mir fehlt der Ansatz dazu leider noch ganz.

Der binomische Sartz und dessen Herleitung sind mir bekannt.

Jaja: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomischer Satz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 31.01.2015
Autor: abakus

Fang doch einfach mal an.
Induktionsanfang?
[mm] $(a+b)^1$  [/mm] ...

Bezug
                
Bezug
Binomischer Satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Sa 31.01.2015
Autor: sandroid

Induktionsanfang für n = 1:

(a + b) = [mm] \summe_{k=0}^{1} \binom{1}{0}a^{1-k}b^{k}=a+b [/mm]

Induktion: n [mm] \to [/mm] n + 1

(a + [mm] b)^{n+1} [/mm] = [mm] \summe_{k=0}^{n+1} \binom{n+1}{k}a^{n+1-k}b^{k} [/mm]
[mm] =b^{n+1} [/mm] + [mm] \summe_{k=0}^{n} \binom{n+1}{k}a^{n+1-k}b^{k} [/mm]

Ich komme da einfach nicht weiter.

Bezug
                        
Bezug
Binomischer Satz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 31.01.2015
Autor: MathePower

Hallo sandroid,

> Induktionsanfang für n = 1:
>  
> (a + b) = [mm]\summe_{k=0}^{1} \binom{1}{0}a^{1-k}b^{k}=a+b[/mm]
>  
> Induktion: n [mm]\to[/mm] n + 1
>  
> (a + [mm]b)^{n+1}[/mm] = [mm]\summe_{k=0}^{n+1} \binom{n+1}{k}a^{n+1-k}b^{k}[/mm]
>  
> [mm]=b^{n+1}[/mm] + [mm]\summe_{k=0}^{n} \binom{n+1}{k}a^{n+1-k}b^{k}[/mm]
>  
> Ich komme da einfach nicht weiter.


Fang doch so an:

[mm]\left(a+b\right)^{n+1}=\left(a+b\right)*\left(a+b\right)^{n}=\left(a+b\right)*\summe_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}[/mm]

Muiltipliziere dies aus, dann hast Du zwei Summen.
Dann ist das nach Ausdrücken der Form [mm]a^{r}*b^{s}[/mm] zu sortieren,
damit Du die in der Aufgabe gegebene Formel verwenden kannst.


Gruss
MathePower

Bezug
                                
Bezug
Binomischer Satz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 So 01.02.2015
Autor: sandroid

Vielen Dank für den sehr nützlichen Hinweis.

Um ganz ehrlich zu sein: Ich wäre jedoch so noch lange nicht drauf gekommen, dazu bin ich noch zu wenig mit Summen vertraut.

Den Beweis habe ich aber dann auch im []Beweisarchiv gefunden, für alle nachfolgend interessierten hieran.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 20m 5. TS85
MaßTheo/Sigma-Algebra = P(X)
Status vor 1d 21h 59m 8. Gonozal_IX
MaßTheo/Beweis Sigma-Algebra
Status vor 2d 6. hohohaha1234
USons/Größtmöglichstes Produkt
Status vor 3d 2. matux MR Agent
Mathematica/parametrischen Plot
Status vor 3d 3. Gonozal_IX
UAuslg/Log. Äquivl. vs. log. Schluss
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]