Black Jack < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen,
ich beschäftige mich momentan mit den Gewinnwahrscheinlichkeiten beim Black Jack. Hierzu liegt mir auch ein Buch vor, dass in vielen Tabellen diverse Werte präsentiert. Mein Problem ist nur, dass nirgends explizit genannt wird, wie die Werte genau errechnet wurden.
Ich hoffe ihr könnt mir hierbei helfen...
Beginnen wir erstmal mit den Wahrscheinlichkeiten für die Ergebnisse der Bank: Hier sind für die Werte "17 (Punkte)" über "Black Jack" bis "22 (Punkte) oder mehr" die einzelnen Wahrscheinlichkeiten angegeben. Allerdings ist mir nicht ganz klar, wie dies zu rechnen ist. Ich könnte zwar alle erdenklichen Kombinationen für die einzelnen Ergebnisse jeweils notieren und die Wahrscheinlichkeiten für die einzelnen Karten miteinander multiplizieren und die Endwahrscheinlichkeiten aufsummieren (also quasi Pfad- und Summenregeln für einen Baum anwenden), aber das ist ja ein höllischer Aufwand! Gibt es da nicht eine Formel - die mir entfallen ist *schäm* - mit der ich direkt(er) zum Ziel komme? Z. B. für eine Zufallsvariable X, die der entsprechenden Punktzahl entspricht, sowas wie
$P(X=17)=...$?
|
|
|
|
Hallo fagottator,
so eine Formel, wie Du sie suchst, gibt es hier nicht. Man muss tatsächlich mühsam die Wahrscheinlichkeiten einzeln berechnen, also per Baum etc. Das hängt auch damit zusammen, dass man ja zu verschiedenen Zeitpunkten (und schon gegebenen Karten) ja die aktuelle Wahrscheinlichkeit wissen bzw. bestimmen will. Diese Wahrscheinlichkeit hängt aber erheblich von den schon gegebenen Karten ab, insbesondere dann, wenn Black Jack privat mit einer zu geringen Zahl von Kartenspielen gespielt wird. In Casinos darf zumindestens anfangs die Auswirkung schon gegebener Karten noch ziemlich vernachlässigt werde - also nicht die Deines eigenen Blatts (das Ausgangspunkt aller Berechnungen sein wird), sondern die im Ansatz zu berücksichtigenden schon "verbrauchten" Karten (wie viele Könige gibt es eigentlich noch?).
Grüße
reverend
|
|
|
|
|
Hallo reverend,
danke für die schnelle Antwort!
Also ich gehe schon von der Casino-Situation aus, d.h. die Wahrscheinlichkeiten der einzelnen Karten sollen konstant bleiben (was von daher berechtigt ist, da im Casino mehrere Kartenspiele gleichzeitig im "Schlitten" miteinander vermischt sind und der Schlitten nicht koplett leergespielt wird.).
Aber ich verstehe deine Antwort richtig, dass ich nichtsdestotrotz einen riesigen Baum für alles aufstellen muss!?!
LG
fagottator
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Mi 30.11.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
So, mittlerweile habe ich in Erfahrung gebracht ,dass ich tatsächlich einen Baum malen müsste, wenn ich die in meinem Buch angegebenen W'keiten überprüfen wollte. Der Autor des Buches hat die Werte wohl durch eine Simulation auf dem PC erhalten und deshalb nehme ich diese einfach hin.
Allerdings stellt sich mir jetzt eine weitere Frage:
Wie erhalte/ errechne ich die bedingten W'keiten für eine bestimmte Punktzahl der Bank unter der Bedingung, dass die erste Karte einen bestimmten Wert hat (Bsp.: Wie groß ist die W'keit, dass die Bank 17 Pkt erzielt, wenn die erste Karte eine 2 ist?)
Ich habe ja nur die W'keiten für die einzelnen Karten (1/13 bzw. 4/13; diese Werte darf ich als stationär betrachten) und die W'keiten für die Endergebnisse der Bank.
Betrachten wir mal das oben gegebene Bsp.:
Hier gilt ja: $P(17|2) = [mm] \bruch{P(17 \cap 2)}{P(2)}$
[/mm]
Doch wie komme ich denn an $P(17|2)$? Hätte ich einen Baum, könnte ich die Werte ja ablesen, aber den habe ich mir ja "gespart". Muss man das auch simulieren?
Würde mich freuen, wenn mir wer helfen könnte.
LG fagottator
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Di 13.12.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|