matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBogenlänge Kardioide
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Bogenlänge Kardioide
Bogenlänge Kardioide < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge Kardioide: Verwirrung
Status: (Frage) beantwortet Status 
Datum: 17:46 Fr 16.05.2008
Autor: devilsdoormat

Aufgabe
Man bestimmte die Bogenlänge der Kardioide mit der Parametrisierung [mm]\gamma : [0, 2\pi] \to \IR ^2 mit \gamma (t) := \begin{pmatrix} (1+cos(t))cos(t) \\ (1+cos(t))sin(t) \end{pmatrix}[/mm]

Hallo,

ich habe diese Frage in keinem anderen Forum gestellt.

Mein Endergebnis ist 0... da kann also irgendetwas nicht stimmen. Hier mal meine Zwischenergebnisse:

[mm] \dot \gamma (t) = \begin{pmatrix} -sin(t)cos(t)-(1+cos(t))sin(t) \\ -sin^2(t)+(1+cos(t))sin(t) \end{pmatrix} \left| \dot \gamma (t) \right| = \wurzel{2} \wurzel{1+cos(t)} \integral_{0}^{2\pi} \wurzel{2} \wurzel{1+cos(t)}\, dt = \wurzel{8} \left[ \wurzel{1-cos(t)} \right]_{0}^{2 \pi} [/mm]

nach dem Einsetzen der Grenzen kommt dann 0 raus... wo liegt jetzt mein Fehler?

Danke!

        
Bezug
Bogenlänge Kardioide: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Fr 16.05.2008
Autor: Leopold_Gast

Deine Stammfunktion ist nur für [mm]t \in [0,\pi][/mm] korrekt.



Ein paar Ergänzungen.

Dein Integrand ist unnötig kompliziert. Es gilt nämlich

[mm]\sqrt{2 \, ( 1 + \cos t )} = 2 \left| \cos \frac{t}{2} \right|[/mm]

Und so erzwingt die Berechnung des Integrals eine Fallunterscheidung für die Intervalle [mm][0,\pi][/mm] und [mm][\pi,2 \pi][/mm].

Alternativ kann man auch versuchen, eine auf ganz [mm][0 , 2 \pi][/mm] gültige Stammfunktion anzugeben. Das wäre etwa

[mm]F(t) = 4 \left( 1 - \sin \frac{t}{2} \right) \cdot \operatorname{sgn}( t - \pi ) \, , \ \ t \in [0, 2 \pi][/mm]

worin [mm]\operatorname{sgn}[/mm] die Signumfunktion bezeichne (die für positive Eingaben 1, für negative Eingaben -1 und für Null 0 zurückgibt).

Und noch einfacher geht es. Niemand zwingt einen, die Kurve über das Intervall [mm][0 , 2 \pi][/mm] zu parametrisieren. Man könnte ebensogut [mm][ - \pi , \pi ][/mm] nehmen. Dann ist man allen Ärger mit Fallunterscheidungen los, da [mm]\cos \frac{t}{2}[/mm] über diesem Intervall keine negativen Werte annimmt. Betragsstriche können also entfallen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]