Boolsche Algebra < Technische Inform. < Praktische Inform. < Hochschule < Informatik < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:34 Di 07.03.2006 | Autor: | G3kkoo |
Aufgabe | Wandeln Sie die Formel in eine minimale Normalform um.
[mm] \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \overline{X_{0}} \vee X_{3} X_{0} \vee X_{2} X_{1}
[/mm]
[mm] X_{3} \overline{X_{2}} X_{1} \vee X_{3} \overline{X_{2}} \overline{X_{1}} \overline{X_{0}} \vee \overline{X_{3}} X_{2} X_{1} \overline{X_{0}} [/mm]
[mm] X_{3} X_{1} \overline{X_{0}} \vee \overline{X_{3}} X_{2} \overline{X_{1}} \overline{X_{0}} \vee \overline{X_{3}} X_{2} \overline{X_{1}} \overline{X_{0}} [/mm]
[mm] X_{3} X_{2} \overline{X_{1}} \overline{X_{0}} \vee \overline{X_{3}} X_{2} \overline{X_{1}} X_{0} \vee X_{3} X_{2} X_{1} X_{0} [/mm] |
Hallöchen,
Als Erstes habe ich erweitert:
[mm] X_{3} X_{0} [/mm] = [mm] X_{3} X_{2} X_{1} X_{0} \vee X_{3} X_{2} \overline{X_{1}} X_{0} \vee X_{3} \overline{X_{2}} X_{1} X_{0} \vee X_{3} \overline{X_{2}} \overline{X_{1}} X_{0}
[/mm]
[mm] X_{2} X_{1} [/mm] = [mm] X_{3} X_{2} X_{1} X_{0} \vee \overline{X_{3}} X_{2} X_{1} X_{0} \vee X_{3} X_{2} X_{1} \overline{X_{0}} \vee \overline{X_{3}} X_{2} X_{1} \overline{X_{0}}
[/mm]
[mm] X_{3} \overline{X_{2}} X_{1} [/mm] = [mm] X_{3} \overline{X_{2}} X_{1} X_{0} \vee X_{3} \overline{X_{2}} X_{1} \overline{X_{0}}
[/mm]
[mm] X_{3} X_{1} \overline{X_{0}} [/mm] = [mm] X_{3} X_{2} X_{1} \overline{X_{0}} \vee X_{3} \overline{X_{2}} X_{1} \overline{X_{0}}
[/mm]
Anschließend alle die doppelt sind rausgestrichen und zum Schluss blieb dies übrig:
[mm] \overline{X_{3}} \overline{X_{2}} \overline{X_{1}} \overline{X_{0}} \vee X_{3} \overline{X_{2}} \overline{X_{1}} \overline{X_{0}} \vee \overline{X_{3}} X_{2} X_{1} \overline{X_{0}} [/mm]
[mm] \overline{X_{3}} X_{2} \overline{X_{1}} \overline{X_{0}} \vee X_{3} X_{2} \overline{X_{1}} \overline{X_{0}} \vee \overline{X_{3}} X_{2} \overline{X_{1}} X_{0} [/mm]
[mm] X_{3} X_{2} X_{1} X_{0} \vee X_{3} X_{2} \overline{X_{1}} X_{0} \vee X_{3} \overline{X_{2}} X_{1} X_{0} [/mm]
[mm] X_{3} \overline{X_{2}} \overline{X_{1}} X_{0} \vee \overline{X_{3}} X_{2} X_{1} X_{0} \vee X_{3} X_{2} X_{1} \overline{X_{0}} [/mm]
[mm] X_{3} \overline{X_{2}} X_{1} \overline{X_{0}}
[/mm]
Danach weiter mit Boolsche Algebra gekürzt bis hin zu: [mm] \overline{X_{1}} \overline{X_{0}} \vee X_{3} X_{1} \vee \overline{X_{3}} X_{2} X_{1} \vee X_{2} \overline{X_{1}} X_{0} \vee X_{3} \overline{X_{2}} \overline{X_{1}} X_{0}
[/mm]
Durch den Test in der Wahrheitstabelle und noch im KV- Diagramm weiß ich, dass das Ergebnis y= [mm] X_{3} \vee X_{2} \vee \overline{X_{1}} \overline{X_{0}} [/mm] ist.
Meiner Meinung nach kann ich hier nicht mehr weiter kürzen, hat jemand noch eine Idee? Das muss ich in drei Wochen drauf haben für die Klausur :/
Vielen Dank im Voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo G3kkoo,
Deine Vorgehensweise zur Lösung der Aufgabe finde ich irgendwie seltsam, weil dadurch die Formeln, die Du minimieren sollst, unnötig "aufgebläht" werden, oder? Du kannst hier doch sofort mit Boolescher Algebra arbeiten. Ich versuch's jetzt mal nur mit der zweiten Formel, alle Aufgaben kann ich dir nicht lösen, weil mir die Zeit fehlt.
> Wandeln Sie die Formel in eine minimale Normalform um.
> [mm]X_{3} \overline{X_{2}} X_{1} \vee X_{3} \overline{X_{2}} \cdot{\overline{X_{1}} \cdot{\overline{X_{0}} }}\vee \overline{X_{3}} X_{2} X_{1} \overline{X_{0}}[/mm]
Minimale Normalform bedeutet doch entweder die Konjunktive Normalform oder die Disjunktive. Bei der DNF wäre das wohl die mit der geringsten Anzahl an Monomen (hoffentlich hab' ich das noch richtig in Erinnerung). Ok, frisch ans Werk :
[mm]x_3 \overline{x_2} x_1 + x_3 \overline{x_2} \cdot{\overline{x_1}\cdot{ \overline{x_0} }}+ \overline{x_3} x_2 x_1 \overline{x_0} \equiv x_3\overline{x_2}\left(x_1 + \overline{x_1}\cdot{\overline{x_0}}\right)+\overline{x_3} x_2 x_1 \overline{x_0}[/mm]
[mm]\mathop\equiv^{\text{Distributivgesetz}} x_3\overline{x_2}\left(\left(x_1 + \overline{x_1}\right)\left(x_1 + \overline{x_0}\right)\right)+\overline{x_3} x_2 x_1 \overline{x_0} \equiv x_3\overline{x_2}\left(x_1 + \overline{x_0}\right)+\overline{x_3} x_2 x_1 \overline{x_0}[/mm]
[mm]\equiv x_3\overline{x_2}x_1 + x_3\overline{x_2}\cdot{\overline{x_0}}+\overline{x_3} x_2 x_1 \overline{x_0}[/mm]
Und das wäre dann die minimale DNF. (Mir scheint es jedenfalls so...)
In gleicher Weise müßtest Du dann auch die anderen Aufgaben bearbeiten.
Viele Grüße
Karl
|
|
|
|