Borelscher Messraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] (\IR,\mathcal{B}) [/mm] der Borelsche Messraum und [mm] \mu_1,\mu_2 [/mm] zwei sigma-endliche Maße auf [mm] (\IR,\mathcal{B}) [/mm] mit
[mm] \mu_1([a,b))=\mu_2([a,b)) [/mm] mit [mm] (a,b \in \IR, a
Zeigen Sie:
[mm] \mu_1(B)=\mu_2(B), (B \in \mathcal{B}) [/mm] |
Ich habe diese Frage in keinem anderen Forum gestellt.
Hallo,
ich verstehe leider so einiges noch nicht bei diesem Thema:
Wenn [mm] \mu_1, \mu_2 [/mm] zwei sigma-endliche Maße auf [mm] (\IR,\mathcal{B}) [/mm] sind, dann muss doch in [mm] \IR [/mm] eine Folge [mm] A_n [/mm] existieren, die in diesem Fall isoton gegen [mm] \IR [/mm] läuft, und das Maß davon ist < [mm] \infty.
[/mm]
Oder ist der Ausgangsraum [mm] \mathcal{B} [/mm] ?
Und ist nicht jedes offene Intervall ein Element aus [mm] \mathcal{B} [/mm] und damit ist [mm] \mu_1([a,b))=\mu_1(B) [/mm] ?
Aber das kann ja wohl nicht sein, sonst wäre die Aufgabe nicht so ?
Danke, Susanne.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Di 27.10.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 Di 27.10.2009 | Autor: | steffenhst |
Hallo,
Ich hoffe, dass dir folgende Überlegung noch hilft. Ausgangspunkt deines Beweises sollte sein, dass [mm] \mü_1 [/mm] mit [mm] \mü_2 [/mm] für alle rechts-halb-offenen Intervalle übereinstimmt. Du sollst das Ganze nun nachweisen, für den Borelschen Messraum, d.h. [mm] \IR [/mm] und die Borelschen Mengen. Was unterscheidet denn die Borelschen Mengen von den halb-offenen Intervallen?
Wenn du das hast, dann weißt du auch, wie du die Sigma-Endlichkeit verwenden kannst? Vielleicht noch ein Tip: Fortsetzungssätze!
Grüße, Steffen
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:46 Di 27.10.2009 | Autor: | SusanneK |
Hallo Steffen,
vielen Dank für deine Hilfe !
Vielleicht sehe ich dadurch jetzt ein wenig klarer, aber der grosse Durchblick fehlt noch:
Die rechts offenen Intervalle sind ein Halbring, also ist [mm] \mu_1,\mu_2 [/mm] auf einem Halbring definiert.
Da der Borelsche Messraum eine Sigma-Algebra ist, benötige ich die 2-malige Fortsetzung vom Halbring, das bedeutet laut meinem Skript:
zuerst [mm] v(A)=\summe_{i=1}^{n}\mu(A_i) [/mm]
und dann [mm] v(A)=inf\{\summe_{n=1}^{\infty}\mu(A_n) | A \subset \summe_{n=1}^{\infty} A_n\}[/mm], [mm] (A_n) [/mm] Mengenfolge aus [mm] \IR.
[/mm]
Puh,
wenn ich also ein rechts-offenes Intervall A in disjunkte Intervalle einteile, z.B. [mm] ([1,2),[2,3).. [/mm], dann ist die Summe der Maße [mm] \mu_1 [/mm] über diese Teil-Intervalle = Summe der Maße [mm] \mu_2 [/mm] über die gleichen Intervalle und damit die Summe [mm] v_1 [/mm] (A) gleich der Summe [mm] v_2 [/mm] (A).
Wenn jetzt B ein Element eines Borelschen Messraumes (Sigma-Algebra mit rechts-offenen Intervallen) ist, ist dann B ein rechts-offenes Intervall, das ich in eine Folge von Intervallen einteilen muss ?
Ich verstehe das Infimum in dieser Formel nicht, das kleinste Intervall geht doch dann gegen 0 - wahrscheinlich verstehe ich den Fortsetzungssatz nicht richtig ?
Danke, Susanne.
|
|
|
|
|
Hallo,
> Die rechts offenen Intervalle sind ein Halbring, also ist
> [mm]\mu_1,\mu_2[/mm] auf einem Halbring definiert.
> Da der Borelsche Messraum eine Sigma-Algebra ist,
> benötige ich die 2-malige Fortsetzung vom Halbring
auf die Borelsche Sigma-Algebra. Korrekt! Wichtiger ist aber auch noch, dass diese Fortsetzung eindeutig ist (das wird für den zweiten FS wichtig werden).
Betrachten wir zunächst den Ring, der durch die ho-Intervalle erzeugt wird. Dieser erzeugte Ring besteht aus allen endlichen Summen paarweis fremder ho-Intervalle und natürlich den ho-Intervallen selbst. Mit dem ersten Fortsetzungsatz gibt es nun eindeutige Fortsetzungen von [mm] \mu_1 [/mm] und [mm] \mu_2 [/mm] auf diesen Ring. Seien [mm] v_1 [/mm] und [mm] v_2 [/mm] diese Fortsetzungen. Gilt dann [mm] v_1 [/mm] (A) = [mm] v_2 [/mm] (A) für ein beliebiges ho-Intervall A? Warum? [Beachte was du zeigen sollst!]
Jetzt betrachten wir die Borelsche Sigma-Algebra. Diese wird durch die ho-Intervalle erzeugt und natürlich auch durch den von den ho-Intervallen erzeugten Ring. Mit dem zweiten Fortsetzungssatz gibt es jetzt eine eindeutige Fortsetzung von [mm] v_1 [/mm] und [mm] v_2 [/mm] auf die Borelsche Sigma-Algebra. Warum? Und warum stimmen nun die beiden Fortsetzungen für ein ho-Intervall überein? (Beachte: Es geht immer nur um die ho-Intervalle, deshalb brauchst du die Formel mit dem Infimum nicht!)
Vielleicht nochmal zu der Formel mit dem Infimum: Man betrachtet hier für eine Menge A beliebige, disjunkte Mengenfolgen [mm] A_n, [/mm] die A enthalten. Für jeder dieser Mengenfolgen kann ich [mm] \summe_{i=1}^{\infty} A_n [/mm] bestimmen und das Maß von A ist dann "einfach" das Infimum all dieser Werte. Aber wie gesagt, für den Beweis brauchst du das nicht.
Grüße, Steffen
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:17 Mi 28.10.2009 | Autor: | SusanneK |
Hallo Steffen,
wow,
vielen vielen Dank für die ausführliche Erklärung !!
> Betrachten wir zunächst den Ring, der durch die
> ho-Intervalle erzeugt wird. Dieser erzeugte Ring besteht
> aus allen endlichen Summen paarweis fremder ho-Intervalle
> und natürlich den ho-Intervallen selbst. Mit dem ersten
> Fortsetzungsatz gibt es nun eindeutige Fortsetzungen von
> [mm]\mu_1[/mm] und [mm]\mu_2[/mm] auf diesen Ring. Seien [mm]v_1[/mm] und [mm]v_2[/mm] diese
> Fortsetzungen. Gilt dann [mm]v_1[/mm] (A) = [mm]v_2[/mm] (A) für ein
> beliebiges ho-Intervall A? Warum? [Beachte was du zeigen
> sollst!]
Hmm, das gilt, weil das der Fortsetzungssatz sagt (ich habe leider keinen Beweis dazu) - oder vielleicht, weil ein beliebiges ho-Intervall A eine Teilmenge des Ringes ist und damit ein Maß auf dem Ring auch für A gilt.
> Jetzt betrachten wir die Borelsche Sigma-Algebra. Diese
> wird durch die ho-Intervalle erzeugt und natürlich auch
> durch den von den ho-Intervallen erzeugten Ring. Mit dem
> zweiten Fortsetzungssatz gibt es jetzt eine eindeutige
> Fortsetzung von [mm]v_1[/mm] und [mm]v_2[/mm] auf die Borelsche
> Sigma-Algebra. Warum? Und warum stimmen nun die beiden
> Fortsetzungen für ein ho-Intervall überein? (Beachte: Es
> geht immer nur um die ho-Intervalle, deshalb brauchst du
> die Formel mit dem Infimum nicht!)
Es gibt eine eindeutige Fortsetzung, weil [mm] \mu_1 [/mm] und [mm] \mu_2 [/mm] sigma-endlich sind.
Ja, und dann stehe ich auf dem Schlauch - die stimmen doch überein, weil [mm] \mu_1 [/mm] (beliebiges ho Intervall) = [mm] \mu_2 [/mm] (gleiches Intervall) über die Fortsetzungssätze "gleich fortgesetzt werden" - oder ?
> Vielleicht nochmal zu der Formel mit dem Infimum: Man
> betrachtet hier für eine Menge A beliebige, disjunkte
> Mengenfolgen [mm]A_n,[/mm] die A enthalten. Für jeder dieser
> Mengenfolgen kann ich [mm]\summe_{i=1}^{\infty} A_n[/mm] bestimmen
> und das Maß von A ist dann "einfach" das Infimum all
> dieser Werte. Aber wie gesagt, für den Beweis brauchst du
> das nicht.
Ah, das bedeutet, das Maß ist dann sozusagen die Schnittmenge aller Folgen [mm] (A_n), [/mm] die A enthalten, und das ist dann A.
VIELEN DANK, Susanne.
|
|
|
|
|
Hallo Susanne,
> > Betrachten wir zunächst den Ring, der durch die
> > ho-Intervalle erzeugt wird. Dieser erzeugte Ring besteht
> > aus allen endlichen Summen paarweis fremder ho-Intervalle
> > und natürlich den ho-Intervallen selbst. Mit dem ersten
> > Fortsetzungsatz gibt es nun eindeutige Fortsetzungen von
> > [mm]\mu_1[/mm] und [mm]\mu_2[/mm] auf diesen Ring. Seien [mm]v_1[/mm] und [mm]v_2[/mm] diese
> > Fortsetzungen. Gilt dann [mm]v_1[/mm] (A) = [mm]v_2[/mm] (A) für ein
> > beliebiges ho-Intervall A? Warum? [Beachte was du zeigen
> > sollst!]
> Hmm, das gilt, weil das der Fortsetzungssatz sagt (ich
> habe leider keinen Beweis dazu) - oder vielleicht, weil ein
> beliebiges ho-Intervall A eine Teilmenge des Ringes ist und
> damit ein Maß auf dem Ring auch für A gilt.
Ja, genau, der 1. Fortsetzungssatz sagt, dass die Fortsetzung der Maße eindeutig ist (ohne! irgendwelche weiteren Vorraussetzungen an die Maße selbst zu stellen). Und die Maße stimmen jetzt für beliebige ho-Intervalle überein, weil Sie das vorher ja schon gemacht haben und die ho-Intervalle selbst ja wieder im Ring liegen, denn sie erzeugen den Ring. [Im Beweis geht es praktisch darum, dass du Erzeugung und Fortsetzung zusammenbringst].
> > Jetzt betrachten wir die Borelsche Sigma-Algebra. Diese
> > wird durch die ho-Intervalle erzeugt und natürlich auch
> > durch den von den ho-Intervallen erzeugten Ring. Mit dem
> > zweiten Fortsetzungssatz gibt es jetzt eine eindeutige
> > Fortsetzung von [mm]v_1[/mm] und [mm]v_2[/mm] auf die Borelsche
> > Sigma-Algebra. Warum? Und warum stimmen nun die beiden
> > Fortsetzungen für ein ho-Intervall überein? (Beachte: Es
> > geht immer nur um die ho-Intervalle, deshalb brauchst du
> > die Formel mit dem Infimum nicht!)
> Es gibt eine eindeutige Fortsetzung, weil [mm]\mu_1[/mm] und [mm]\mu_2[/mm]
> sigma-endlich sind.
Exakt, d.h. auch für die Borelsche Sigma-Algebra gilt, dass die fortgesetzten Maße eindeutig sind. Bleibt also die Frage, ob die beiden so fortgesetzten Maße für beliebige ho-Intervalle übereinstimmen. Na klar, weil sie es ja schon am Anfang gemacht haben und die ho-Intervalle sind ja auch Elemente der Borelschen Sigma-Algebra, denn sie erzeugen Sie den Ring und der Ring erzeugt die Sigma-A., d.h. der Ring ist wieder Element der S.-A und damit auch die ho-Intervalle. (allgemein gilt aber auch, dass die ho-Intervalle die B-S.A. erzeugen). OK?
> Ja, und dann stehe ich auf dem Schlauch - die stimmen
> doch überein, weil [mm]\mu_1[/mm] (beliebiges ho Intervall) = [mm]\mu_2[/mm]
> (gleiches Intervall) über die Fortsetzungssätze "gleich
> fortgesetzt werden" - oder ?
>
> > Vielleicht nochmal zu der Formel mit dem Infimum: Man
> > betrachtet hier für eine Menge A beliebige, disjunkte
> > Mengenfolgen [mm]A_n,[/mm] die A enthalten. Für jeder dieser
> > Mengenfolgen kann ich [mm]\summe_{i=1}^{\infty} A_n[/mm] bestimmen
> > und das Maß von A ist dann "einfach" das Infimum all
> > dieser Werte. Aber wie gesagt, für den Beweis brauchst du
> > das nicht.
> Ah, das bedeutet, das Maß ist dann sozusagen die
> Schnittmenge aller Folgen [mm](A_n),[/mm] die A enthalten, und das
> ist dann A.
Nee, sorry, hatte mich verschrieben. Richtig heißt es:
Man betrachtet hier für eine Menge A beliebige, disjunkte
Mengenfolgen [mm]A_n,[/mm] die A enthalten. Für jeder dieser
Mengenfolgen kann ich [mm]\summe_{i=1}^{\infty} \mu (A_n) [/mm] bestimmen und das Maß von A ist dann "einfach" das Infimum all
dieser Werte.
Grüße, Steffen
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:22 Do 29.10.2009 | Autor: | SusanneK |
Hallo Steffen,
vielen, vielen Dank für deine tolle Hilfe.
Deine ausführlichen Erklärungen haben mit sehr geholfen, das Thema und die Idee des Beweises zu verstehen.
LG, Susanne.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 23:29 Sa 31.10.2009 | Autor: | iks |
Aufgabe | Sei [mm] (\IR,\mathcal{B}) [/mm] der Borelsche Messraum und [mm] \mu_1,\mu_2 [/mm] zwei sigma-endliche Maße auf [mm] (\IR,\mathcal{B}) [/mm] mit
[mm] \mu_1([a,b))=\mu_2([a,b)) [/mm] mit [mm] (a,b \in \IR, a
Zeigen Sie:
[mm] \mu_1(B)=\mu_2(B), (B \in \mathcal{B}) [/mm] |
Hallo!
Da ich die gleiche Aufgabe zu lösen habe, klink ich mich mal in diesen Fremdthread.
> > > Betrachten wir zunächst den Ring, der durch die
> > > ho-Intervalle erzeugt wird. Dieser erzeugte Ring besteht
> > > aus allen endlichen Summen paarweis fremder ho-Intervalle
> > > und natürlich den ho-Intervallen selbst. Mit dem ersten
> > > Fortsetzungsatz gibt es nun eindeutige Fortsetzungen von
> > > [mm]\mu_1[/mm] und [mm]\mu_2[/mm] auf diesen Ring. Seien [mm]v_1[/mm] und [mm]v_2[/mm] diese
> > > Fortsetzungen. Gilt dann [mm]v_1[/mm] (A) = [mm]v_2[/mm] (A) für ein
> > > beliebiges ho-Intervall A? Warum? [Beachte was du zeigen
> > > sollst!]
> > Hmm, das gilt, weil das der Fortsetzungssatz sagt (ich
> > habe leider keinen Beweis dazu) - oder vielleicht, weil ein
> > beliebiges ho-Intervall A eine Teilmenge des Ringes ist und
> > damit ein Maß auf dem Ring auch für A gilt.
>
> Ja, genau, der 1. Fortsetzungssatz sagt, dass die
> Fortsetzung der Maße eindeutig ist (ohne! irgendwelche
> weiteren Vorraussetzungen an die Maße selbst zu stellen).
> Und die Maße stimmen jetzt für beliebige ho-Intervalle
> überein, weil Sie das vorher ja schon gemacht haben und
> die ho-Intervalle selbst ja wieder im Ring liegen, denn sie
> erzeugen den Ring. [Im Beweis geht es praktisch darum, dass
> du Erzeugung und Fortsetzung zusammenbringst].
>
> > > Jetzt betrachten wir die Borelsche Sigma-Algebra. Diese
> > > wird durch die ho-Intervalle erzeugt und natürlich auch
> > > durch den von den ho-Intervallen erzeugten Ring. Mit dem
> > > zweiten Fortsetzungssatz gibt es jetzt eine eindeutige
> > > Fortsetzung von [mm]v_1[/mm] und [mm]v_2[/mm] auf die Borelsche
> > > Sigma-Algebra. Warum? Und warum stimmen nun die beiden
> > > Fortsetzungen für ein ho-Intervall überein? (Beachte: Es
> > > geht immer nur um die ho-Intervalle, deshalb brauchst du
> > > die Formel mit dem Infimum nicht!)
> > Es gibt eine eindeutige Fortsetzung, weil [mm]\mu_1[/mm] und
> [mm]\mu_2[/mm]
> > sigma-endlich sind.
>
> Exakt, d.h. auch für die Borelsche Sigma-Algebra gilt,
> dass die fortgesetzten Maße eindeutig sind.
Also hier hänge ich. Da nur gegeben ist, dass die Maße [mm] $\mu_1,\mu_2$ [/mm] auf der Borelsigmaalgebra [mm] $\mathcal{B}$ [/mm] sigmaendlich sind.Daraus folgt doch aber nicht die Sigmaendlichkeit von der Maße im Ring [mm] $\rho(\mathcal{I})$? [/mm] und die wird doch aber im zweiten Fortsetzungssatz für die Eindeutigkeit der Fortsetzung gefordert.
Ich dachte zunächst, das man zeigen kann, das zu beliebigem sigmaendlichem Maß [mm] $\mu$ [/mm] auf [mm] $\mathcal{B}$ $\mu([a,b))<\infty$ [/mm] ist. Leider wurde diese Idee niedergeschlagen mithilfe des [mm] $\IQ$ [/mm] Zählmaßes auf [mm] $\mathcal{B}$.
[/mm]
Wie kann ich also die Sigmaendlichkeit von [mm] $\mu_1,\mu_2$ [/mm] auf [mm] $\rho(\mathcal{I})$ [/mm] zeigen??
Hat jemand einen Rat für mich?
[mm] $\mathcal{I}$ [/mm] := Halbring der halboffenen Intervalle $[a,b)$
Dank im Voraus iks
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 09:10 So 01.11.2009 | Autor: | iks |
Aufgabe | Sei [mm] $(\IR,\mathcal{B})$ [/mm] der Borelsche Messraum und [mm] $\mu_1,\mu_2$ [/mm] zwei [mm] $\sigma$-endliche [/mm] Maße auf [mm] $(\IR,\mathcal{B})$ [/mm] mit
[mm] $\mu_1([a,b))=\mu_2([a,b))$
[/mm]
Zeigen Sie bitte [mm] $\mu_1(B)=\mu_2(B)$ $(B\in\mathcal{B})$
[/mm]
|
Hallo!
Die oben erwähnte Kopfnuß mit dem [mm] $\IQ$-Zählmaß, [/mm] läßt mich zum Schluss kommen, das die Forderung "Zeigen sie [mm] $\mu_1(B)=\mu_2(B)$..." [/mm] ohne weitere Angaben zu den Maßen nicht haltbar ist.
Könntet ihr bitte mal das Gegenbeispiel korrekturlesen??
Definition $T$-Zählmaß (aus Script):
Sei [mm] $(\Omega,\mathcal{A})$ [/mm] ein Messraum und [mm] $T\subset\Omega$. [/mm] Dann heißt das durch
[mm] $\mu(A):=\begin{cases} |A\cap T|, & \mbox{für } A\cap T \mbox{ endlich} \\ \infty, & \mbox{sonst }\end{cases}$ [/mm]
definierte Maß [mm] $\mu$ [/mm] auf [mm] $\mathcal{A}$ [/mm] das $T$-Zählmaß auf [mm] $\mathcal{A}$.
[/mm]
Sei nun [mm] $T_1:=\IQ$ [/mm] und [mm] $T_2:=A^{\IR}$ [/mm] (die Menge der algebraischen Zahlen in [mm] $\IR$).
[/mm]
Dann sind durch
[mm] $\mu_1(B):=\begin{cases} |B\cap \IQ|, & \mbox{für } B\cap\IQ \mbox{ endlich} \\ \infty, & \mbox{sonst }\end{cases}$ $(B\in\mathcal{B})$
[/mm]
und
[mm] $\mu_2(B):=\begin{cases} |B\capA^{\IR}|, & \mbox{für } B\cap A^{\IR} \mbox{ endlich} \\ \infty, & \mbox{sonst }\end{cases}$ $(B\in\mathcal{B})$
[/mm]
zwei Zählmaße auf [mm] $\mathcal{B}$ [/mm] definiert.
zeige nun, dass [mm] $\mu_1,\mu_2$ $\sigma$-endlich [/mm] sind:
Da [mm] $\IQ,A^{\IR}$ [/mm] abzählbar sind, gibt es Bijektionen [mm] $f_1:\IN\to\IQ$, $f_2:\IN\to A^{\IR}$.
[/mm]
Sei [mm] $(A_n)$ [/mm] eine Folge in [mm] $\mathcal{B}$ [/mm] mit [mm] $A_0:=\IR\backslash\IQ$ $A_1:=A_0\cup \{f(1)\}$, $A_2:=A_1\cup \{f(2)\}$ [/mm] etc.
Dann konvergiert [mm] $(A_n)$ [/mm] isoton gegen [mm] $\IR$ [/mm] und für [mm] $(n\in\IN)$ [/mm] ist [mm] $\mu_1(A_n)<\infty$ [/mm] also [mm] $\mu_1$ $\sigma$-endlich [/mm] auf [mm] $\mathcal{B}$.
[/mm]
Analog folgt die [mm] $\sigma$-endlichkeit [/mm] von [mm] $\mu_2$.
[/mm]
Da [mm] $\IQ,A^{\IR}$ [/mm] dicht in [mm] $\IR$ [/mm] liegen, gilt:
[mm] |[a,b)\cap\IQ|=|[a,b)\cap A^{\IR}|=\infty [/mm] für beliebiges [mm] $[a,b)\subset\IR$
[/mm]
also [mm] $\mu_1([a,b))=\mu_2([a,b))$
[/mm]
aber [mm] $\mu_1(\{\sqrt{2}\})=0\neq1=\mu_2(\{\sqrt{2}\})$
[/mm]
Damit ist ein Gegenbeispiel konstruiert. Dank an Klaus für die Kopfnuß.
mFg iks
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 Di 03.11.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Di 03.11.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|