matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBox- und Produkttopologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Box- und Produkttopologie
Box- und Produkttopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Box- und Produkttopologie: Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 12.08.2011
Autor: Loko

Aufgabe
Kann mir jemand den Unterschied erklären?

Wir haben in der Vorlesung die Boxtopologie nur kurz erwähnt. Jetzt beim Lernen würde mich aber doch der Unterschied zur Produkttopologie interessieren.
Ich hab auch schon ein bisschen rumgesucht, und gefunden, dass die Basen sich so unterscheiden:
[mm] \IR^{w} [/mm] := [mm] \produkt_{i \in \IN}\IR [/mm] die Menge aller reellen Folgen
[mm] B_{Box} [/mm] = [mm] \{ \produkt_{i \in \IN} U_{i} : U_{i}\subseteq \IR offen \} [/mm] = [mm] \{\bigcap_{i \in \IN}p_{i}1{-1}(U_{i}) : U_{i}\subseteq \IR offen \} [/mm]
und
[mm] B_{Prod} [/mm] = [mm] \{ \bigcap_{i \in K}p_{i}1{-1}(U_{i}) : K \subseteq \IN endlich und U_{i} \subseteq \IR offen \} [/mm]
(Mit den [mm] p_{i} [/mm] die Projektionen)

Ist also der Unterschied, dass die Boxtopologie den unendlichen Schnitt als Basis hat? Mit ist nicht klar was ich daraus schließen kann.....

Ich hoffe es hat wer Lust zu antworten :)

Viele Grüße

Loko

        
Bezug
Box- und Produkttopologie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Fr 12.08.2011
Autor: f12

Guten Tag Loko

Zuerst einmal zu Definition:

Produkt-Topologie:

Sei [mm] X_\alpha [/mm] topologischer Raum für alle $\ [mm] \alpha [/mm] $ (in deinem Fall $\ [mm] \IR [/mm] $) und $\ [mm] \alpha \in [/mm] J$ eine Indexmenge. Dann schaust du dir das kartesische Produkt an:

[mm] \produkt_{\alpha \in J} X_\alpha[/mm]

Darauf definieren wir nun die Produkttopologie:

[mm] S_\alpha = \{\pi_\alpha^{-1}(U_\alpha) | U_\alpha \text{ offen in } X_\alpha \} [/mm]

und

[mm] S = \bigcup_{\alpha \in J} S_\alpha[/mm]

Dann ist die Produkttopologie die Topologie, die durch die Subbasis $\ S $ generierte Topologie. Die Abbildung $\ [mm] \pi_\alpha [/mm] $ ist die normale Projektion auf $\ [mm] X_\alpha [/mm] $.

Die Boxtopologie ist "einfacher" definiert: Sie ist die Menge aller Mengen, der Form:

[mm]\produkt_{\alpha \in J} U_\alpha[/mm] wobei $\ [mm] U_\alpha [/mm] $ offen ist in $\ [mm] X_\alpha \forall \alpha \in [/mm] J$.

Mann kann zeigen, dass die beiden Topologien für ENDLICHE Produkte identisch sind. Sie unterscheiden sich nur im unendlichen Fall.

Man verwendet aber lieber die Produkttopologie, da viele Eigenschaften nur für sie gelten. Ich empfehle dir das Buch: Topology von James R. Munkres. Dies ist meines Erachtens das beste Buch über Topologie. Es zählt zu meinen absoluten Favoriten unter allen Mathebüchern.

Freundliche Grüsse

f12

Bezug
                
Bezug
Box- und Produkttopologie: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Sa 13.08.2011
Autor: Loko

Vielen Dank für die schnelle Antwort!
Das Buch werd ich mir mal angucken :)

Lg Loko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]