matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisBräuchte ein Ableitungs-Korrekturlesen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Bräuchte ein Ableitungs-Korrekturlesen
Bräuchte ein Ableitungs-Korrekturlesen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bräuchte ein Ableitungs-Korrekturlesen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 03.05.2004
Autor: DerMathematiker

Hallo Ihr,

ich habe mir mal selbst eine Aufgabe gestellt mit Produkt und Kettenregel integriert. Könnte das mal einer prüfen?

g(x) = [mm] (2*x^{2} [/mm] + [mm] 3)^{2} [/mm] * [mm] ln^{2}(x) [/mm]

g'(x) = [mm] (2*x^{2} [/mm] + 3)*ln(x)*(8*x*ln(x) +  [mm] \bruch{2}{x} (2*x^{2} [/mm] + 3))

könnte das mal einer nachprüfen?

Ich weiß es ist ziemlich verwirren. Wollte nur noch einmal mich herausfordern vor morgen Abi.

MfG DerMathematiker

        
Bezug
Bräuchte ein Ableitungs-Korrekturlesen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Mo 03.05.2004
Autor: dave

Die Ableitung ist Richtig mit Maple geprüft.

Gruss Dave

Bezug
        
Bezug
Bräuchte ein Ableitungs-Korrekturlesen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mo 03.05.2004
Autor: Marc

Hallo DerMathematiker!

> ich habe mir mal selbst eine Aufgabe gestellt mit Produkt
> und Kettenregel integriert. Könnte das mal einer prüfen?

Ich glaube, du solltest mal langsam Pause machen, wenn du schon integrieren und differenzieren verwechselst ;-)
Mach' dich nicht verrückt vor der Abi-Klausur, du bist doch sehr gut vorbereitet. Jetzt ist das wichtigste, ausgeruht und ausgeschlafen den morgigen Tag zu beginnen.

> $g(x) = [mm] (2*x^{2} [/mm] + [mm] 3)^{2} [/mm] * [mm] \ln^{2}(x)$ [/mm]
>  
> $g'(x) = [mm] (2*x^{2} [/mm] + [mm] 3)*\ln(x)*(8*x*\ln(x) [/mm] +  [mm] \bruch{2}{x} (2*x^{2} [/mm] + 3))$

Ich rechne das mal nach:

$g'(x) = [mm] ((2*x^{2} [/mm] + [mm] 3)^{2})'*\ln^{2}(x) [/mm] + [mm] (2*x^{2} [/mm] + [mm] 3)^{2}*(\ln^{2}(x))'$ [/mm]
$= [mm] 4x*2*\blue{(2*x^{2} + 3)}\black{}*\blue{\ln}\black{}^{2}\blue{(x)}\black{} [/mm] + [mm] \blue{(2*x^{2} + 3)}\black{}^{2}*\bruch{1}{x}*2*\blue{\ln(x)}$ [/mm]

$= [mm] \blue{(2*x^{2} + 3)*\ln(x)}\black{} *\left\lbrack 4x*2* \ln(x) + (2*x^{2} + 3)*\bruch{1}{x}*2 \right\rbrack$ [/mm]

$= [mm] (2*x^{2} [/mm] + [mm] 3)*\ln(x) *\left\lbrack 8x* \ln(x) + (2*x^{2} + 3)*\bruch{2}{x} \right\rbrack$ [/mm]

[ok], also stimmt dein Ergebnis!

> könnte das mal einer nachprüfen?
>  
> Ich weiß es ist ziemlich verwirren. Wollte nur noch einmal
> mich herausfordern vor morgen Abi.

Siehst du, jetzt kannst du beruhigt in die Prüfung morgen gehen :-)

Viel Erfolg für die Klausur morgen!! Behalt die Nerven, du schaffst das schon.

Alles Gute,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]