matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPolitik/WirtschaftBreak Even Point
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Politik/Wirtschaft" - Break Even Point
Break Even Point < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Break Even Point: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:23 Sa 03.03.2012
Autor: hasso


Hallo zusammen,

ich hab folgene Frage:
Ein Betrieb Behälter des Typs B1 und B2 in den Bereichen TF(teilefertigung),VM(Vormontage) und EM(Endmontage). Die benötigten Fertigungsstunden jedes Behältertyp und die verfügbare Gesamtstundenzahl der Fertigungsbereiche sind in folgender tabelle zusammengefasst.

Behälter B1
TF ( teilfertigung) 210 Stunden
VM ( Vormontage 0 Stunden
EM ( Endmontage) 70 Stunden

Behälter B2
TF ( teilfertigung) 70 Stunden
VM ( Vormontage 210 Stunden
EM ( Endmontage) 210 Stunden

Maximale Kapazität pro Monat in Stunden: Teilfertigung 1470, Vormontage 840, Endmontage 1050

Die variablen kosten je Behälter betragen 2000euro für Typ B1 und 1000euro fürt Typ B2. Der Erlös je behälter 5000 euro für Typ 1 und 3000euro für typ B2. Die fixen kosten betragen 20000 euro pro Monat. Gesucht ist das optimale(monatliche) Produktionsprogramm mit dem maximalen Gewinn.

Entwickeln sie das mathematische Modell/Formalproblem.





        
Bezug
Break Even Point: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Sa 03.03.2012
Autor: hasso

Hallo zusammen,

ich hab folgene Frage:
Ein Betrieb Behälter des Typs B1 und B2 in den Bereichen TF(teilefertigung),VM(Vormontage) und EM(Endmontage). Die benötigten Fertigungsstunden jedes Behältertyp und die verfügbare Gesamtstundenzahl der Fertigungsbereiche sind in folgender tabelle zusammengefasst.

Behälter B1
TF ( teilfertigung) 210 Stunden
VM ( Vormontage 0 Stunden
EM ( Endmontage) 70 Stunden

Behälter B2
TF ( teilfertigung) 70 Stunden
VM ( Vormontage 210 Stunden
EM ( Endmontage) 210 Stunden

Maximale Kapazität pro Monat in Stunden: Teilfertigung 1470, Vormontage 840, Endmontage 1050

Der umsatz(Summe aller durch beide behältertypen erzielten Erlöse) soll mindesten 30000Euro pro Monat betragen.

Die variablen kosten je Behälter betragen 2000euro für Typ B1 und 1000euro fürt Typ B2. Der Erlös je behälter 5000 euro für Typ 1 und 3000euro für typ B2. Die fixen kosten betragen 20000 euro pro Monat. Gesucht ist das optimale(monatliche) Produktionsprogramm mit dem maximalen Gewinn.

Entwickeln sie das mathematische Modell/Formalproblem.





Bezug
        
Bezug
Break Even Point: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 So 04.03.2012
Autor: VNV_Tommy

Hallo Hasso,

die Aufgabe gehört meiner Meinung nach weniger in die Kategorie "Break-Even-Punkt" als vielmehr in die Kategorie "Lineare Programmierung". Deshalb solltest du die Hauptbedingung (Gewinnmaximierung) und die entsprechenden Nebenbedingungen (gegeben durch den Mindestumsatz und die Produktionskapazitäten) aufstellen und lösen. Zum Lösen des Problems würde sich in dem Falle eine grafische Lösung eignen oder du nutzt (soweit bekannt) den Simplex-Algorithmus.

Beste Grüße
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]