matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBrems- Beschleunigungskonstant
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - Brems- Beschleunigungskonstant
Brems- Beschleunigungskonstant < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brems- Beschleunigungskonstant: Herleitung
Status: (Frage) beantwortet Status 
Datum: 20:07 So 29.08.2021
Autor: marthasmith

Aufgabe
<br>
Es handelt sich um keine Aufgabe sondern um eine Darstellung als Grundlage für weitere Berechnungen.

Gegeben ist (v,t)-Diagramm, in dem ein Fahrzeug bis zur Maximalgeschwindigkeit [mm] $v_{max}$ [/mm] beschleunigt und anschließend direkt wieder bremst (unter Verwendung der einfachen Bewegungsgleichungen, also: [mm] $v=a\cdot [/mm] t$). Es gibt einzelne Werte für die Beschleunigung $a^+$ und die Verzögerung $a^-$.
Nun ist in dem Buch allgemein angegeben, dass für die weitere Rechnung mit einer Brems- Beschleunigungskonstante gerechnet wird, die sich aus dem harmonischen Mittel ergibt.
[mm] $a=\frac{2\cdot a^+ \cdot a^-}{a^+ + a^-} [/mm]
 





<br>
Die grafische Darstellung ist logisch, ich habe einfach mal mit Zahlen ein Beispiel gerechnet und es passt (siehe Bild mit [mm] $v_{max} [/mm] = 4 [mm] \frac{m}{s}$, $t_1 [/mm] = 2 s$, $T=6 s$ und daraus folgend [mm] $t_2 [/mm] = [mm] T-t_1=4s$, [/mm] es kam dann auch für [mm] $a=\frac{4}{3} \frac{m}{s^2} [/mm] $heraus). Mir ist aber nicht klar, wie die Begründung für das harmonische Mittel bzw. die Herleitung dieser Gleichung für die Brems- und Beschleunigungskonstante ist.
Es wäre klasse, wenn mir jemand hier auf die Sprünge helfen würde.

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Brems- Beschleunigungskonstant: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 29.08.2021
Autor: HJKweseleit


> <br>
>  Es handelt sich um keine Aufgabe sondern um eine
> Darstellung als Grundlage für weitere Berechnungen.
>  
> Gegeben ist (v,t)-Diagramm, in dem ein Fahrzeug bis zur
> Maximalgeschwindigkeit [mm]v_{max}[/mm] beschleunigt und
> anschließend direkt wieder bremst (unter Verwendung der
> einfachen Bewegungsgleichungen, also: [mm]v=a\cdot t[/mm]). Es gibt
> einzelne Werte für die Beschleunigung [mm]a^+[/mm] und die
> Verzögerung [mm]a^-[/mm].
>  Nun ist in dem Buch allgemein angegeben, dass für die
> weitere Rechnung mit einer Brems- Beschleunigungskonstante
> gerechnet wird, die sich aus dem harmonischen Mittel
> ergibt.
>  [mm]$a=\frac{2\cdot a^+ \cdot a^-}{a^+ + a^-}[/mm]
>   
>  

Nach meiner Überlegung (s.u.) ist der Faktor 2 zu viel: Man darf nur das halbe harmonische Mittel nehmen.

>
>
> <br>
>  Die grafische Darstellung ist logisch, ich habe einfach
> mal mit Zahlen ein Beispiel gerechnet und es passt (siehe
> Bild mit [mm]v_{max} = 4 \frac{m}{s}[/mm], [mm]t_1 = 2 s[/mm], [mm]T=6 s[/mm] und
> daraus folgend [mm]t_2 = T-t_1=4s[/mm], es kam dann auch für
> [mm]a=\frac{4}{3} \frac{m}{s^2} [/mm]heraus). Mir ist aber nicht
> klar, wie die Begründung für das harmonische Mittel bzw.
> die Herleitung dieser Gleichung für die Brems- und
> Beschleunigungskonstante ist.
>  Es wäre klasse, wenn mir jemand hier auf die Sprünge
> helfen würde.


Zunächst ist die Frage, was das gesuchte a überhaupt sein soll. Vermutung; Mit welcher Beschleunigung a hätte man den zurückgelegten Weg in derselben Zeit erreicht?
Falls aber das a etwas anderes bedeuten sollte, sind meine Überlegungen natürlich irrelevant.

Kritisch: Die Endgeschwindigkeit, die man aus diesem a errechnen würde, stimmt aber nicht mit der tatsächlichen überein, die ja 0 sein soll.



Zur Vereinfachung (ich hasse Indices):
                                                      

A=Anfangsbeschleunigung [mm] a^{+} [/mm]    T = Beschleunigungszeit
B=Bremsbeschleunigung [mm] a^{-} [/mm]      t = Bremszeit

Umkehrgeschwindigkeit v [mm] =\underline{ AT = Bt} [/mm]  

Hinweg = 0,5 [mm] AT^2 [/mm]     Bremsweg = 0,5 [mm] Bt^2, [/mm]   Gesamtweg = 0,5 [mm] (AT^2+Bt^2)= [/mm] 0,5 [mm] (AT^2+Bt*t)= [/mm] ...
für Bt nun AT eingesetzt
...= 0,5 (AT*T+AT*t)=0,5 AT(T+t)

Dieser Gesamtweg soll nun gleich 0,5 [mm] a(T+t)^2 [/mm] sein:

0,5 [mm] a(T+t)^2 [/mm] = 0,5 AT(T+t)       |:0,5 (T+t)

a(T+t)=  AT

a=AT/(T+t)=...Ziel: t durch T ersetzen, daher mit B erweitert ... =ATB/(BT+Bt) =...
mit Bt=AT...= ABT/(BT+AT) = ...  T herausgekürzt ...=AB/(A+B)  wie behauptet.

Es kommt also nur das halbe harmonische Mittel heraus.

Geometrisch plausibel:
Die Fläche unter den beiden Dreiecksseiten in deinem Bild entspricht der zurückgelegten Strecke. Nimm nun die Seite, die zur kleinsten Beschleunigung gehört, und verlängere sie oben, so dass sie von der Start- bis zur Endzeit geht. Die Gesamtfläche ist nun größer. Wäre der Gesamtvorgang mit dieser Beschleunigung erfolgt, wäre die Strecke also größer gewesen. Ist sie aber nicht. Also muss das gesuchte a


Dein Beispiel ist auch fehlerhaft: Du kommst auf eine Strecke von 4m+8m=12m in 6 s, dazu gehört eine Beschleunigung von 2/3 [mm] m/s^2: [/mm]

12 = [mm] 0,5*2/3*6^2 [/mm]




Bezug
                
Bezug
Brems- Beschleunigungskonstant: Ergänzung/Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Mo 30.08.2021
Autor: HJKweseleit

Offenbar habe ich dein Bild falsch interpretiert. weil ich dachte, dass die beiden verschiedenfarbigen Linien zu zwei Beispielen gehören.

Ist es so, dass die beiden Beschleunigungen durch ZWEI GLEICHGROßE verschiedenartige (pos und neg) ersetzt werden sollen? Dann ergibt sich mit meinen vorhergehenden Bezeichnungen:

AT=Bt

Gesamtstrecke=0,5 [mm] AT^2+0,5 Bt^2=0,5(AT*T+Bt*t)=0,5 [/mm] (AT*t+AT*t)= 0,5 AT(T+t) wie zuvor, aber jetzt
...=0,5 [mm] a(\bruch{T+t}{2})^2 [/mm] * 2

0,5 AT(T+t)=0,5 [mm] a(\bruch{T+t}{2})^2 [/mm] * 2=0,5 [mm] a\bruch{(T+t)^2}{4} [/mm] * 2=

dividiert durch 0,5(T+t)

[mm] AT=a\bruch{(T+t)}{2} [/mm]

[mm] a=\bruch{2AT}{T+t}=\bruch{2ABT}{BT+Bt}=\bruch{2ABT}{BT+AT}=\bruch{2A}{A+B} [/mm]  (harmonisches Mittel)

Bedeutet: Statt mit A zu beschleunigen und mit B zu Bremsen, kann man beides mit a machen und erhält dieselbe Strecke in derselben Zeit.

Bezug
                        
Bezug
Brems- Beschleunigungskonstant: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Sa 04.09.2021
Autor: marthasmith

Hallo HJKweseleit,

vielen Dank für Deine Ergänzung. Ich habe letztes Wochenende basierend auf Deinem Kommentar auch nochmal alles nachgerechnet (mit den Zahlen und bin zu derselben Erkenntnis gekommen wie Du). Nun war ich heute hier, um meine selbständig, hart erkäpfte Rechnung zu posten. Aber Du hast schon nochmal geantwortet.

Vielen herzlichen Dank :)
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]