matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBriefproblem, Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Briefproblem, Erwartungswert
Briefproblem, Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Briefproblem, Erwartungswert: Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:05 Mi 24.06.2009
Autor: DerGraf

Aufgabe
Wir betrachten das Rencontre Problem, d.h. es werden n Briefe in n bereits adressierte Umschläge gesteckt und verschickt. Bestimmen Sie die mittlere Anzahl der richtig versendeten Briefe in Abhängigkeit von n.

Hallo,
ich habe zwar schon einen Ansatz zu dieser Aufgabe gefunden, bin mir damit aber noch nicht so ganz sicher. Kann mir jemand sagen ob meine Lösung stimmt?

Als Verteilungsfunktion habe ich bei diesem Problem:

[mm] F(k)=P(X=k)=\left( \bruch{n!}{k!} \right)\summe_{i=0}^{n-k}(-1)^{i}*\bruch{1}{i!} [/mm]

Demzufolge wäre der Erwartungswert doch:

[mm] E(X)=\summe_{k=0}^{n}k*P(X=k)=\summe_{k=1}^{n}k*\left( \bruch{n!}{k!} \summe_{i=0}^{n-k}(-1)^{i}*\bruch{1}{i!}\right)=\summe_{k=0}^{n-1}\left( \bruch{n!}{k!} \summe_{i=0}^{n-k-1}(-1)^{i}*\bruch{1}{i!}\right) [/mm]

Ist dies so richtig? Und kann ich das noch vereinfachen?
Ich bräuchte dringend eure Hilfe.

Gruß DerGraf

        
Bezug
Briefproblem, Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 25.06.2009
Autor: wauwau

Du hast in deiner Formel zur Berechnung der Wahrscheinlichkeiten den Faktor  [mm] \bruch{1}{n!} [/mm] vergessen.

Aber gehen wir mal von den
[mm]F(n,k)=\left( \bruch{n!}{k!} \right)\summe_{i=0}^{n-k}(-1)^{i}*\bruch{1}{i!}[/mm]

Das ist nicht die Verteilung sondern die Anzahlfunktion.

Dann gilt die Rekursion

[mm]F(n+1,k+1) = \bruch{n+1}{k+1}F(n,k) [/mm]

oder aber

[mm] (k+1)\bruch{F(n+1,k+1) }{(n+1)!} = \bruch{F(n,k)}{n!} [/mm] (1)

Rechts steht jetzt die richtige Verteilungsfunktion!

Bildet man nun die Erzeugenden Funktionen

[mm]G(n,x)) = \summe_{i=0}^{n} \bruch{F(n,i)x^i}{n!} [/mm] mit G(n,1)=1

so wäre ja G'(n,1) der gesuchte Erwartungswert.

Da aufgrund von (1) jedoch G'(n,x) = G(n,x) gelten muss

ist der gesuchte Erwartungswert 1






Bezug
                
Bezug
Briefproblem, Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Do 25.06.2009
Autor: DerGraf

Vielen Dank für deine Hilfe!
Die Erklärung gefällt mir Spitze :)

Gruß
DerGraf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]