matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 5-7Bruchrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 5-7" - Bruchrechnung
Bruchrechnung < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Sa 18.04.2020
Autor: KevinKanghong

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Addiere 3 Brüche so miteinander, dass genau 1 herauskommt.

Vorgabe: Die 3 Zähler sind einstellig, die 3 Nenner sind zweistellig und alle Ziffern von 1-9 müssen genau einmal vorkommen.

Ich habe diese Knobel-Aufgabe von meiner Mathe-Lehrerin bekommen
und brauche Hilfe zur Lösung.  


        
Bezug
Bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 18.04.2020
Autor: Josef


> Addiere 3 Brüche so miteinander, dass genau 1
> herauskommt.
>  
> Vorgabe: Die 3 Zähler sind einstellig, die 3 Nenner sind
> zweistellig und alle Ziffern von 1-9 müssen genau einmal
> vorkommen.
>  


[mm] \bruch{5}{10} [/mm] + [mm] \bruch{7}{28} [/mm] + [mm] \bruch{9}{36} [/mm] = 1


Überlegung zur Lösung:

[mm] \bruch{1}{2} [/mm] + [mm] \bruch{1}{4} [/mm] + [mm] \bruch{1}{4} [/mm] = 1


Viele Grüße
Josef

Bezug
                
Bezug
Bruchrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Sa 18.04.2020
Autor: statler

Hallo Josef,

> > Addiere 3 Brüche so miteinander, dass genau 1
> > herauskommt.
>  >  
> > Vorgabe: Die 3 Zähler sind einstellig, die 3 Nenner sind
> > zweistellig und alle Ziffern von 1-9 müssen genau einmal
> > vorkommen.
>  >  
>
>
> [mm]\bruch{5}{10}[/mm] + [mm]\bruch{7}{28}[/mm] + [mm]\bruch{9}{36}[/mm] = 1
>  
>
> Überlegung zur Lösung:
>  
> [mm]\bruch{1}{2}[/mm] + [mm]\bruch{1}{4}[/mm] + [mm]\bruch{1}{4}[/mm] = 1
>  

Damit bin ich nicht einverstanden, die 0 ist nicht zugelassen und die 4 fehlt.
Eine Lösung weiß ich allerdings noch nicht :(
Gruß
Dieter


Bezug
        
Bezug
Bruchrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Sa 18.04.2020
Autor: Fulla

Hallo KevinKanghong,

diese Aufgabe ist wirklich nicht einfach...

Ich habe mich selbst daran versucht und einen ähnlichen Weg wie Josef versucht: Nimm drei "einfache" Brüche, die zusammen eins ergeben und erweitere sie so, dass alle Ziffern genau einmal vorkommen und die sonstigen Bedingungen erfüllt sind.

Weder [mm]\bruch {1}{3} +\bruch {1}{3} +\bruch {1}{3}[/mm] noch [mm]\bruch{1}{2}+ \bruch{1}{3} + \bruch{1}{6}[/mm] haben funktioniert.

Dann habe ich ein wenig recherchiert...
Es gibt (die) eine Lösung [mm]\frac{9}{12}+ \frac{5}{34}+ \frac{7}{68}=1[/mm] und die lässt sich nicht auf so einfache Brüche wie oben zurückführen.
[]Eine Quelle beschreibt eine Variante mit Brute-Force-Programmierung, []hier wird etwas mehr getüftelt, es ist aber im Wesentlichen auch nur Trial-and-error. (Im deutschsprachigen Internet habe ich leider nichts dazu gefunden.)

Lieben Gruß
Fulla

Bezug
        
Bezug
Bruchrechnung: Danksagung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 23.04.2020
Autor: KevinKanghong

Ich möchte mich bei allen bedanken, die mir bei meinem Problem geholfen habe.

Es hat mir sehr geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]