matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenBruchterm vereinfachen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Bruchterm vereinfachen
Bruchterm vereinfachen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchterm vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Mi 05.08.2015
Autor: abinator123

Aufgabe
Vereinfache folgenden Bruch soweit wie möglich:

[mm] \bruch{x^{3}(1 + x^{2} +\wurzel{x^{2} + 1}}{(x^{4} + x^{2})(1 + \wurzel{x^{2} + 1})} [/mm]


Hallo zusammen,

ich bin neu hier und habe auch direkt eine Frage, die mich hierher getrieben hat. Ich habe diese Frage nur hier gestellt.

Man soll den Bruchterm wie oben angegeben vereinfachen. Laut vorhandener Musterlösung soll [mm] \bruch{x}{\wurzel{x^{2} + 1 }} [/mm] rauskommen. Ich komme aber einfach nicht hin.

Ich hab versucht alles auszumultiplizieren, um eventuell anders ausklammern zu können. Ich habe versucht das [mm] x^{3} [/mm] aus dem Zähler zu nehmen und auf einen eigenen Bruchstrich geschrieben bzw. einfach "davor" gezogen um dann eventuell besser/anders ausklammern zu können, es tut sich aber einfach nichts - ich komm nicht hin.

Kann mir hier vielleicht jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bruchterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Mi 05.08.2015
Autor: M.Rex

Hallo und [willkommenmr]

Klammere mal aus der ersten Klammer im Nenner [mm] x^2 [/mm] aus, dann kannst du das schonmal kürzen.

Wenn ich das dann richtig sehe, solltest du den Rest dann ducht ausmultiplizieren hinbekommen.

Marius

Bezug
                
Bezug
Bruchterm vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mi 05.08.2015
Autor: abinator123

Hi,

das habe ich auch schonmal versucht :-). Dann habe ich:

[mm] \bruch{x^{3}(1 + x^{2} +\wurzel{x^{2} + 1}}{(x^{4} + x^{2})(1 + \wurzel{x^{2} + 1})} [/mm]

[mm] \gdw [/mm]

[mm] \bruch{x(1 + x^{2} +\wurzel{x^{2} + 1}}{(x^{2} + 1)(1 + \wurzel{x^{2} + 1})} [/mm]

[mm] \gdw [/mm]

[mm] \bruch{x + x^{3} +x\wurzel{x^{2} + 1}}{x^{2}\wurzel{x^{2} + 1} + x^{2} + \wurzel{x^{2} + 1} + 1} [/mm]

Problem ist ja jetzt, das ich nicht weiter kürzen kann. :-/ oder ich sehe es nicht :-)


Bezug
                        
Bezug
Bruchterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 05.08.2015
Autor: fred97


> Hi,
>  
> das habe ich auch schonmal versucht :-). Dann habe ich:
>  
> [mm]\bruch{x^{3}(1 + x^{2} +\wurzel{x^{2} + 1}}{(x^{4} + x^{2})(1 + \wurzel{x^{2} + 1})}[/mm]

Im Zähler fehlt eine Klammer !


Lautet es so [mm]\bruch{x^{3}(1 + x^{2} +\wurzel{x^{2} + 1})}{(x^{4} + x^{2})(1 + \wurzel{x^{2} + 1})}[/mm], so kommt nicht das heraus, was die Musterlösung behauptet.

Wie also lautet der Zähler korrekt ?

FRED


>  
>  
> [mm]\gdw[/mm]
>  
> [mm]\bruch{x(1 + x^{2} +\wurzel{x^{2} + 1}}{(x^{2} + 1)(1 + \wurzel{x^{2} + 1})}[/mm]
>  
> [mm]\gdw[/mm]
>  
> [mm]\bruch{x + x^{3} +x\wurzel{x^{2} + 1}}{x^{2}\wurzel{x^{2} + 1} + x^{2} + \wurzel{x^{2} + 1} + 1}[/mm]
>  
> Problem ist ja jetzt, das ich nicht weiter kürzen kann.
> :-/ oder ich sehe es nicht :-)
>  


Bezug
                                
Bezug
Bruchterm vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 05.08.2015
Autor: abinator123

Hallo,

ja klar, Du hast recht, die Klammer fehlt da natürlich am ende des Zählers!

kennst Du Wolframalpha?

http://www.wolframalpha.com/input/?i=simplify+%28%28x%5E3+%281+%2B+x%5E2+%2B+Sqrt%5B1+%2B+x%5E2%5D%29%29%2F%28%28x%5E2+%2B+x%5E4%29+%281+%2B+Sqrt%5B1+%2B+x%5E2%5D%29%29%29

Das sagt, es würde das gleiche rauskommen, wie die Musterlösung sagt :-/

Bezug
                                        
Bezug
Bruchterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mi 05.08.2015
Autor: reverend

Hallo abinator,

ja, wir kennen hier wohl alle wolframalpha. Ein gutes Werkzeug, wenn man Zeit sparen will, ein Brett vor dem Kopf hat oder man schlicht etwas überprüfen will. Aber es hilft (wie alle Werkzeuge) nur, wenn man es auch ohne diese Hilfe hinbekommt. Also suchen wir mal nach dem Weg, wie man zum angegebenen Ergebnis kommt.

Wir vereinfachen also [mm] \bruch{x^{3}(1+x^{2}+\wurzel{x^{2}+1})}{(x^{4}+x^{2})(1+\wurzel{x^{2}+1})}=\cdots [/mm]

[mm] \cdots=\bruch{x^3((\wurzel{x^2+1})^2+\wurzel{x^2+1})}{x^2(\wurzel{x^2+1})^2(1+\wurzel{x^2+1})}=\cdots [/mm]

Zwischendurch: ich bin schreibfaul. Hier kannst Du Dir die geschweiften Klammern um hochgestellte oder tiefgestellte Zeichen genau dann sparen, wenn die Hoch- oder Tiefstellung nur ein Zeichen betrifft: [mm] e^x, a^5, p_i [/mm] usw.

Außerdem ersetze ich mal [mm] z:=\wurzel{x^2+1}, [/mm] wo das gerade praktisch ist. Es können von mir aus also ruhig noch irgendwo irgendwelche "$x$" stehenbleiben. Um die kann ich mich noch später kümmern. Auch das ist erstmal nur eine Schreiberleichterung. Also weiter:

[mm] \cdots=\bruch{x^3(z^2+z)}{x^2z^2(1+z)}=\cdots [/mm]

Jetzt ist der Weg bis zu [mm] \cdots=\bruch{x}{z} [/mm] nicht weit.

Zum Schluss ersetzt Du dann wieder $z$.
Hilft das?

Grüße
reverend

Bezug
                                                
Bezug
Bruchterm vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mi 05.08.2015
Autor: abinator123

wow, ich bin begeistert, sehr clever - wäre ich niemals darauf gekommen.

natürlich leuchtet das auch ein, aber nicht gerade trivial.

Bezug
        
Bezug
Bruchterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mi 05.08.2015
Autor: rmix22


> Vereinfache folgenden Bruch soweit wie möglich:
>  
> [mm]\bruch{x^{3}(1 + x^{2} +\wurzel{x^{2} + 1}}{(x^{4} + x^{2})(1 + \wurzel{x^{2} + 1})}[/mm]
>  

Hier ein alternativer Lösungsvorschlag, bei dem ich bereits vom durch [mm] $x^2$ [/mm] gekürzten Term ausgehe:

[mm]\bruch{x\cdot(1 + x^{2} +\wurzel{x^{2} + 1})}{(x^{2} + 1)(1 +\wurzel{x^{2} + 1})}=\frac{x\cdot(1 + x^{2} +\wurzel{x^{2} + 1})}{\wurzel{x^{2} + 1}\cdot \wurzel{x^{2} + 1}\cdot (1 +\wurzel{x^{2} + 1})}[/mm]

Jetzt multipliziere eine der beiden neu geschaffenen Wurzeln im Nenner in die letzte Klammer hinein und freu dich dann, dass du eine Menge kürzen kannst.

Gruß RMix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]