matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBsp Mannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Bsp Mannigfaltigkeit
Bsp Mannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bsp Mannigfaltigkeit: Kreisbogenstück
Status: (Frage) beantwortet Status 
Datum: 21:10 Mi 29.04.2009
Autor: Beppe

Ich weiß, dass ein Kreis im [mm]R^2[/mm] eine glatte Untermannigfaltigkeit ist. Gilt das auch für ein offenes Kreisbogenstück? Kann ich das so formulieren?

[mm]S=\left\{(x_1,x_2)| (x_1-s_1)^2+(x_2-s_2)^2 -1=0 \wedge a < x_1 < b \wedge c < x_2 < d\right\}[/mm]

[mm](s_1, s_2)[/mm] ist der Kreismittelpunkt und (a,c) (b,d) bzw. (a, d) (b, c) sind die jeweiligen Bogenenden (eindeutig gegeben). Ist es auch noch eine Mannigfaltigkeit, wenn ich die Ungleichheiten durch Kleinergleichs ersetze?

Danke schon mal für die Hilfe. Und:

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bsp Mannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Do 30.04.2009
Autor: MatthiasKr

Hi,

> Ich weiß, dass ein Kreis im [mm]R^2[/mm] eine glatte
> Untermannigfaltigkeit ist. Gilt das auch für ein offenes
> Kreisbogenstück? Kann ich das so formulieren?
>  
> [mm]S=\left\{(x_1,x_2)| (x_1-s_1)^2+(x_2-s_2)^2 -1=0 \wedge a < x_1 < b \wedge c < x_2 < d\right\}[/mm]
>  
> [mm](s_1, s_2)[/mm] ist der Kreismittelpunkt und (a,c) (b,d) bzw.
> (a, d) (b, c) sind die jeweiligen Bogenenden (eindeutig
> gegeben). Ist es auch noch eine Mannigfaltigkeit, wenn ich
> die Ungleichheiten durch Kleinergleichs ersetze?
>  

so, wie du es geschrieben hast, geht es nicht. Nimm beispielsweise den oberen offenen halbkreis: du braeuchtest dann eine mischung aus '<' und [mm] '$\le$' [/mm] (fuer $d$).

Eleganter liesse sich das mit polarkoordinaten definieren, dann muss die winkelkoordinate [mm] $\phi$ [/mm] einfach ueber ein offenes intervall laufen.

gruss
matthias


> Danke schon mal für die Hilfe. Und:
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Bsp Mannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:58 Do 30.04.2009
Autor: Beppe

Hallo Matthias,

Was genau geht nicht, dass es eine Mannigfaltigkeit ist, oder dass es mit [mm]\le[/mm] keine mehr ist? Denn den offenen oberen Halbkreis kann ich doch mit < definieren, dann läuft (bei einem Mittelpunkt in (0,0)) eben [mm]-1 < x_1 < 1[/mm] und [mm][mm] 0
Polarkoordinaten kann ich beim übergeordneten Problem leider nicht sinnvoll verwenden.

Danke,
Beppe

Bezug
                        
Bezug
Bsp Mannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 04:05 Do 30.04.2009
Autor: MatthiasKr

Hi Beppe,

> Hallo Matthias,
>  
> Was genau geht nicht, dass es eine Mannigfaltigkeit ist,
> oder dass es mit [mm]\le[/mm] keine mehr ist? Denn den offenen
> oberen Halbkreis kann ich doch mit < definieren, dann läuft
> (bei einem Mittelpunkt in (0,0)) eben [mm]-1 < x_1 < 1[/mm] und
> [mm][mm]0

OK, jetzt verstehe ich wie du das meinst. Das sollte gehen, ja. Mannigfaltigkeiten im klassischen sinne sind denke ich immer offen. Andernfalls spricht man von mannigfaltigkeiten mit rand.

gruss
matthias


> [mm][mm] [/mm][/mm]
> [mm][mm]Polarkoordinaten kann ich beim übergeordneten Problem leider nicht sinnvoll verwenden.[/mm][/mm]
> [mm][mm] [/mm][/mm]
> [mm][mm]Danke,[/mm][/mm]
> [mm][mm] Beppe [/mm][/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]