matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikCAPM auf C-CAPM
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - CAPM auf C-CAPM
CAPM auf C-CAPM < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

CAPM auf C-CAPM: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:01 Di 21.12.2010
Autor: hubar81

Aufgabe
Hallo erst mal in die vorweihnachtliche Runde,

ich beschäftige mich mit dem C-CAPM, welches folgender Gleichung genügt:
[mm] E_{t}(r_{i,t+1})=r_{f,t+1}+\gamma\sigma_{t}(r_{i,t+1},r_{m,t+1})-\frac{\sigma^2_{t}(r_{i,t+1})}{2}, (1)[/mm]
Hierbei ist
[mm] $E_{t}(X)=$ [/mm] der bedingte Erwartungswert der ZV X zum Zeitpunkt t.
[mm] $r_{i,t+1}=$ [/mm] die log-Rendite zum Zeitpunkt t+1 der i-ten Aktie.
[mm] $r_{m,t+1}=$ [/mm] log-Rendite zum Zeitpunkt t+1 der des Marktportfolios
[mm] $\sigma^2_t=$ [/mm] die bedingte Varianz und [mm] $\gamma=$ [/mm] der Risikoaversionsparameter.

Bei der Herleitung der Formel wird davon ausgegangen, dass die Aktienkurse lognormalverteilt sind. Nachdem ich in Matlab ein Kurssimulation vorgenommen habe, wollte ich testen inwieweit ich mit dem Modell unterschiedliche Risikoprämien im Zeitverlauf erklären kann. Als Referenz habe ich hierbei das klassische CAPM genommen. Jetzt nach langem Anlauf mein Problem:

Wird [mm] $\gamma=1$ [/mm] gesetzt, so fällt das Modell auf das log-lineare CAPM zurück. Ich habe nun mit obiger Formel die erwartete Rendite ausgerechet und dann mit dem Ergebnisse des klassichen CAPM vergleichen: Leider keine Übereinstimmung. Nun wollte ich die Formel selbst auf das klassiche CAPM zurückführen. Für Gleichung(1) erhalte ich mit $gamma=1$:
[mm] E_{t}(r_{i,t+1})=r_{f,t+1}+\sigma_{t}(r_{i,t+1},r_{m,t+1})-\frac{\sigma^2_{t}(r_{i,t+1})}{2} [/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


Selbst unter Berücksichtung, dass für lognormalverteilte ZV
$\log(E_t)=E_t(\log)+\frac{\sigma^2_t(\log)$ gilt, komme ich nicht auf das klassiche CAPM in der Form:
[mm] E_{t}(r_{i,t+1})=r_{f,t+1}+(E_t(r_m,t+1)-r_{f,t+1})*\beta_t [/mm].
Ich hoffe die Problemstellung ist einigermaßen verständliche und hoffe, dass mir jemand weiterhelfen kann.

Danke schonmal im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
CAPM auf C-CAPM: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 28.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
CAPM auf C-CAPM: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Mi 29.12.2010
Autor: hubar81

Hallo Nochmal,

weiß nicht genau, ob meine Frage zu unspezifisch ist, oder ich einfach im Weihnachtsloch gelandet bin:)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]