matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeCG-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - CG-Verfahren
CG-Verfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

CG-Verfahren: verständnis
Status: (Frage) überfällig Status 
Datum: 17:28 Fr 07.09.2007
Autor: biblis

hallo,

ich habe mal einige fragen zum cg-verfahren, dabei geht es mir nicht um das rechnen (denn das krieg ich hin), sondern ums verständnis.

das cg-verfahren ist durch das funktional

[mm]\Phi[/mm] (x)= 1/2 x*Ax- x*b

definiert. das minimum dieses funktionals löst das lineare gleichungssymstem Ax=b.

meine iterierten berechne ich mit der formel

x^(k+1)= x^(k) + [mm]\alpha[/mm] d^(k)

d(k) ist meine suchrichtung und  [mm]\alpha[/mm] ist meine schrittweite.

soweit versteh ich es noch. doch nun kommt mein erstes problem.

das residuum ist definiert als
r(k)= b-Ax^(k)

dies ist zugleich der negative gradient und zeigt somit in die richtung des steilsten abstiegs. (dieser vorstellung kann ich folgen), aber das residuum ist doch auch irgendwie ein "rest"?!

zur veranschaulichung hat uns der prof die kreisförmigen niveaulinien von [mm]\Phi[/mm] angemalt und der mittelpunkt ist meine lösung des funktionals.

auf einer geraden d(k), die eine tangente zu einer niveaulinie darstellt, liegt mein neuer punkt x^(k+1). von da aus ist es dann am sinnvollsten eine suchrichtung d^(k+1) zu wählen, die senkrecht zu d(k) ist. aber gleichzeitig ist mein neues residuum auch (senkrecht??) zu d(k).
ich hab irgendwo gelesen, dass es nicht sinnvoll ist, immer den weg des steilsten abstiegs zu gehen (also meinem r^(k) folgend), sondern senkrecht zu d(k)).
d^(k+1) erhalte ich aus d^(k+1)= r^(k+1) +[mm]\beta[/mm]  d^(k)

aber was sagt mir denn dieses residuum? ich versteh den sinn von ihm nicht.... wieso muss ich es immer wieder berechnen, wenn ich seiner richtung garnicht folge? brauch ich es nur, um mein d^(k+1) zu bestimmen?

weiter stell ich mir die frage, was passiert, wenn meine niveaulinien einmal nicht kreisförmig, sondern elliptisch sind. geh ich dann immer noch genauso vor oder konvergieren meine iterierten dann niemals gegen x?

schließlich haben wir in der vorlesung einige dinge definiert, wie zb.

r^(m)* d(j)= 0 für alle 0<=j<m

r^(m)*r^(j)= 0 für alle 0<=j<m

bedeutet das denn nicht, dass sie alle senkrecht aufeinander stehen? wenn das so ist, wieso ist es dann nicht sinnvoll, der suchrichtung r^(k) zu folgen?

zu guter letzt noch die frage, was das ganze dann mit dem krylov-raum zu tun hat und welche vorteile er mir bietet.


wäre super, wenn mir jemand das ganze verfahren (bildlich) erklären könnte.

gruß
biblis

        
Bezug
CG-Verfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 13.09.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]