matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisCasus Irreducibilis ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Casus Irreducibilis ?
Casus Irreducibilis ? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Casus Irreducibilis ?: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:51 Mo 13.11.2006
Autor: gore

Aufgabe
f: [mm] \IR \to \IR [/mm] mit f(x):= [mm] x^3-p*x-q [/mm] (p, q [mm] \in \IR) [/mm]

Schließen Sie, dass die Funktion f genau dann drei verschiedene reelle Nullstellen hat, wenn [mm] (q/2)^2-(p/3)^3 [/mm] < 0.

Hallo,
ich hab da meine Probleme mit der Aufgabe :(
Man musste im Vorfeld die Extrema bestimmen, die habe ich:
Maximum ( [mm] -\wurzel{p/3} [/mm] , [mm] 2/3*p*\wurzel{p/3}-q), [/mm]
Minimum ( [mm] \wurzel{p/3} [/mm] , [mm] -2/3*p*\wurzel{p/3}-q) [/mm] mit p>0.
So, dann war nach einer zusätzlichen Bedingung gefragt, dass das lokale Maximum positiv ist und das lokale Minimum negativ. Dafür muss das gelten:
beim Maximum muss der y-Wert: [mm] 2/3*p*\wurzel{p/3}-q [/mm] >0 sein,
beim Minimum muss der y-Wert: [mm] -2/3*p*\wurzel{p/3}-q [/mm] <0 sein.
So und danach soll man eben schließen, dass f genau dann drei reelle Nullstellen hat, wenn [mm] (q/2)^2-(p/3)^3 [/mm] < 0 gilt. Aber wie schließe ich darauf??
Ich weiß, dass es sich hierbei um den Casus irreducibilis handelt und das dieser bei der Cardanoformel eine dritte Wurzel aus einer negativen Zahl bewirkt, obwohl es reelle Lösungen gibt, aber ich weiß nicht, wie ich aus den Informationen die ich bisher errechnet habe darauf schließen(!) soll, dass gerade bei [mm] (q/2)^2-(p/3)^3 [/mm] < 0 das erfüllt ist.
Kann mir jemand einen Tipp geben oder mir zweigen wo ich falsch denke? :(
Danke
LG



        
Bezug
Casus Irreducibilis ?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 13.11.2006
Autor: moudi


> f: [mm]\IR \to \IR[/mm] mit f(x):= [mm]x^3-p*x-q[/mm] (p, q [mm]\in \IR)[/mm]
>  
> Schließen Sie, dass die Funktion f genau dann drei
> verschiedene reelle Nullstellen hat, wenn [mm](q/2)^2-(p/3)^3[/mm]
> 0.
>  Hallo,

Hallo gore

>  ich hab da meine Probleme mit der Aufgabe :(
>  Man musste im Vorfeld die Extrema bestimmen, die habe
> ich:
>  Maximum ( [mm]-\wurzel{p/3}[/mm] , [mm]2/3*p*\wurzel{p/3}-q),[/mm]
>  Minimum ( [mm]\wurzel{p/3}[/mm] , [mm]-2/3*p*\wurzel{p/3}-q)[/mm] mit p>0.
>  So, dann war nach einer zusätzlichen Bedingung gefragt,
> dass das lokale Maximum positiv ist und das lokale Minimum
> negativ. Dafür muss das gelten:
>  beim Maximum muss der y-Wert: [mm]2/3*p*\wurzel{p/3}-q[/mm] >0
> sein,

d.h.  [mm] $q/2


>  beim Minimum muss der y-Wert: [mm]-2/3*p*\wurzel{p/3}-q[/mm] <0

d.h. [mm] $q/2>-p/3\sqrt{p/3}=-(p/3)^{3/2}$ [/mm]

Beides zusammen ergibt:
[mm] $-(p/3)^{3/2} Das ist aber äquivalent zu [mm] $(q/2)^2<(p/3)^3$. [/mm]

mfG Moudi

> sein.
>  So und danach soll man eben schließen, dass f genau dann
> drei reelle Nullstellen hat, wenn [mm](q/2)^2-(p/3)^3[/mm] < 0 gilt.
> Aber wie schließe ich darauf??
>  Ich weiß, dass es sich hierbei um den Casus irreducibilis
> handelt und das dieser bei der Cardanoformel eine dritte
> Wurzel aus einer negativen Zahl bewirkt, obwohl es reelle
> Lösungen gibt, aber ich weiß nicht, wie ich aus den
> Informationen die ich bisher errechnet habe darauf
> schließen(!) soll, dass gerade bei [mm](q/2)^2-(p/3)^3[/mm] < 0 das
> erfüllt ist.
>  Kann mir jemand einen Tipp geben oder mir zweigen wo ich
> falsch denke? :(
>  Danke
>  LG
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]