matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy-Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Cauchy-Folge
Cauchy-Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 07.06.2010
Autor: steffi.24

Aufgabe
Sei [mm] a_0=0, a_1=1 [/mm] und für n=2,3,... sei [mm] a_n [/mm] durch die Rekursion [mm] a_n=\frac{a_{n-1}+a{n-2}}{2} [/mm] definiert. Zeigen Sie, dass [mm] (a_n) [/mm] eine Cauchy-Folge ist, indem sie zum Beispiel zunächst induktiv die Formel [mm] a_{n+1}-a_n=\frac{(-1)^n}{2^n} (n\in\IN) [/mm] nachweisen. Letzteres erlaubt auch die explizite Bestimmung des Grenzwertes. Was ist sein Wert?

[mm] a_{n+1}-a_n=\frac{(-1)^n}{2^n} [/mm]

Induktionsanfang: n=0

[mm] a_1-a_0=1 [/mm]

1-0=1

[mm] n\to [/mm] n+1

[mm] a_{n+2}-a_{n+1}=\frac{(-1)^{n+1}}{2^{n+1}} [/mm]

Wie gehts jetzt weiter?? Bitte helft mir.glg steffi

        
Bezug
Cauchy-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mo 07.06.2010
Autor: steppenhahn

Hallo!

> Sei [mm]a_0=0, a_1=1[/mm] und für n=2,3,... sei [mm]a_n[/mm] durch die
> Rekursion [mm]a_n=\frac{a_{n-1}+a{n-2}}{2}[/mm] definiert. Zeigen
> Sie, dass [mm](a_n)[/mm] eine Cauchy-Folge ist, indem sie zum
> Beispiel zunächst induktiv die Formel
> [mm]a_{n+1}-a_n=\frac{(-1)^n}{2^n} (n\in\IN)[/mm] nachweisen.
> Letzteres erlaubt auch die explizite Bestimmung des
> Grenzwertes. Was ist sein Wert?
>  [mm]a_{n+1}-a_n=\frac{(-1)^n}{2^n}[/mm]
>  
> Induktionsanfang: n=0
>  
> [mm]a_1-a_0=1[/mm]
>  
> 1-0=1
>
> [mm]n\to[/mm] n+1
>  
> [mm]a_{n+2}-a_{n+1}=\frac{(-1)^{n+1}}{2^{n+1}}[/mm]
>  
> Wie gehts jetzt weiter?? Bitte helft mir.glg steffi

Nur mal so aus Interesse... Hast du jetzt alle Aufgaben von deinem Aufgabenzettel hier abgetippt :-) ?
Benutzt die Definition der Folge und schreibe:

[mm] $a_{n+2}-a_{n+1} [/mm] = [mm] \frac{a_{n+1}+a_{n}}{2}-a_{n+1} [/mm] = [mm] \frac{a_{n}-a_{n+1}}{2} [/mm] = [mm] -\frac{1}{2}*(a_{n+1}-a_{n})$ [/mm]

Nun die Induktionsvoraussetzung benutzen!
Zur Bestimmung des Grenzwerts: Nach der Formel gilt

[mm] $a_{n} [/mm] = [mm] a_{n-1} [/mm] + [mm] \left(-\frac{1}{2}\right)^{n-1}$ [/mm]

$= [mm] a_{n-2} [/mm] + [mm] \left(-\frac{1}{2}\right)^{n-1} [/mm] + [mm] \left(-\frac{1}{2}\right)^{n-2}$ [/mm]

$= [mm] a_{n-3} [/mm] + [mm] \left(-\frac{1}{2}\right)^{n-1} [/mm] + [mm] \left(-\frac{1}{2}\right)^{n-2} [/mm] + [mm] \left(-\frac{1}{2}\right)^{n-3}$, [/mm]

usw. Führe das mal bis auf [mm] a_{0} [/mm] zurück. Dann hast du rechts eine geometrische Reihe stehen, deren Grenzwert du berechnen kannst.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]