matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenCauchy,Rekursion,Iteration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Cauchy,Rekursion,Iteration
Cauchy,Rekursion,Iteration < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy,Rekursion,Iteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Mi 19.11.2014
Autor: sissile

Aufgabe
Es sei [mm] (a_n) [/mm] eine Folge mit der Eigenschaft, dass für ein festes q [mm] \in \IR [/mm] mit 0<q<1 gilt:
[mm] |a_{n+1}-a_n| \le [/mm] q * [mm] |a_n -a_{n-1}|,(n\ge [/mm] 1)
Zeigen die mit Hilfe des Konvegenzprinzipes von Cauchy, dass [mm] (a_n) [/mm] konvergent ist. Lässt sich die Konvergenz auch beweisen, wenn q=1 gilt?

Hallo zusammmen,
Ich hab die Aufgabe sogut wie erledigt nur paar Feinheiten, wo ich Zweifel habe.

Sei [mm] \epsilon>0, [/mm] O.B.d.A. n >m
[mm] |a_n [/mm] - [mm] a_m| [/mm] = [mm] |a_n [/mm] - [mm] a_{n-1} [/mm] + [mm] a_{n-1}-a_{n-2}+a_{n-2}+..+|a_{m+2}-a_{m+1}|+|a_{m+1} [/mm] - [mm] a_m| [/mm]
[mm] \le [/mm] q [mm] |a_{n-1}-a_{n-2}| [/mm] + [mm] q|a_{n-2} -a_{n-3}|+...+q|a_{m+1}-a_m|+q|a_m-a_{m-1}| \le |a_m -a_{m-1}|*(q+q^2+..+q^{n-m-1}+q^{n-m}) \le q^{m-1} |a_0-a_1| \sum_{i=1}^{n-m} q^i [/mm]
= [mm] q^{m-1} |a_0 [/mm] - [mm] a_1| [/mm] *( [mm] \frac{1-q^{n-m+1}}{1-q}-1) \le q^{m-1} |a_0-a_1| [/mm] * [mm] (\frac{1}{1-q}-1) [/mm]
[mm] =q^{m-1} |a_0-a_1| \frac{q}{1-q} \le |a_0-a_1| [/mm] * [mm] \frac{q^m}{1-q} [/mm] < [mm] |a_0-a_1| [/mm] * [mm] \frac{\epsilon}{1-q} [/mm]

Am Schluss stehen ja nur konstanten, die ich doch so stehen lassen darf oder?

Wie muss ich nun N wählen sodass für m,n [mm] \ge [/mm] N: [mm] |a_{m}-a_{n}| [/mm] < [mm] \epsilon'? [/mm]
Die Eigenschaft [mm] |a_{n+1}-a_n| \le [/mm] q * [mm] |a_n -a_{n-1}| [/mm] gilt für jedes n [mm] \ge [/mm] 1,
Es existiert ein Index [mm] N_1 sodass:\forall k\ge N_1 q^k [/mm] < [mm] \epsilon [/mm] da 0<q<1
Also wähle ich [mm] N:=N_1 [/mm]

Ist q=1, dann erhalten wir:
[mm] |a_n [/mm] - [mm] a_m [/mm] | [mm] \le q^{m-1} |a_0-a_1| \sum_{i=1}^{n-m} q^i [/mm]  = [mm] |a_0-a_1| \sum_{i=1}^{n-m} [/mm] 1 = [mm] |a_0 -a_1| [/mm] (n-m)
Hier erziehlt man kein Resultat. Aber kann man anders Divergenz/Konvergenz zeigen bei q=1?

LG,
sissi

        
Bezug
Cauchy,Rekursion,Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 19.11.2014
Autor: Marcel

Hallo Sissile,

> Es sei [mm](a_n)[/mm] eine Folge mit der Eigenschaft, dass für ein
> festes q [mm]\in \IR[/mm] mit 0<q<1 gilt:
>  [mm]|a_{n+1}-a_n| \le[/mm] q * [mm]|a_n -a_{n-1}|,(n\ge[/mm] 1)
>  Zeigen die mit Hilfe des Konvegenzprinzipes von Cauchy,
> dass [mm](a_n)[/mm] konvergent ist. Lässt sich die Konvergenz auch
> beweisen, wenn q=1 gilt?
>  Hallo zusammmen,
>  Ich hab die Aufgabe sogut wie erledigt nur paar
> Feinheiten, wo ich Zweifel habe.
>  
> Sei [mm]\epsilon>0,[/mm] O.B.d.A. n >m
>  [mm]|a_n[/mm] - [mm]a_m|[/mm] = [mm]|a_n[/mm] - [mm]a_{n-1}[/mm] +
> [mm]a_{n-1}-a_{n-2}+a_{n-2}+..+|a_{m+2}-a_{m+1}|+|a_{m+1}[/mm] -
> [mm]a_m|[/mm]

entweder machst Du rechts erstmal nur einen Betrag um alles, oder Du
machst aus dem = ein [mm] $\le$ [/mm]

> [mm]\le[/mm] q [mm]|a_{n-1}-a_{n-2}|[/mm] + [mm]q|a_{n-2} -a_{n-3}|+...+q|a_{m+1}-a_m|+q|a_m-a_{m-1}| \le |a_m -a_{m-1}|*(q+q^2+..+q^{n-m-1}+q^{n-m}) \le q^{m-1} |a_0-a_1| \sum_{i=1}^{n-m} q^i[/mm]
> = [mm]q^{m-1} |a_0[/mm] - [mm]a_1|[/mm] *( [mm]\frac{1-q^{n-m+1}}{1-q}-1) \le q^{m-1} |a_0-a_1|[/mm]
> * [mm](\frac{1}{1-q}-1)[/mm]
>  [mm]=q^{m-1} |a_0-a_1| \frac{q}{1-q} \le |a_0-a_1|[/mm] * [mm]\frac{q^m}{1-q} \red{\;<\, |a_0-a_1|* \frac{\epsilon}{1-q}}[/mm]

Streiche die rote Abschätzung - sie wird zu grob! Die davor ist brauchbar!

Ich bin jetzt ehrlich gesagt ein wenig zu faul, mir Details anzugucken. Ich
schreib's mal auf, wie ich es bspw. machen würde, da wird es sicher die
ein oder andere Abweichung von Deiner Rechnung geben:
Für alle $n > m [mm] \ge [/mm] 2$ gilt
    
    [mm] $|a_n-a_m|=\left|\sum_{k=m+1}^n (a_k-a_{k-1})\right| \le \sum_{k=m+1}^n |a_k-a_{k-1}|\le |a_{m+1}-a_m|*\sum_{k=1}^{n-m} q^{k-1}\le |a_{m+1}-a_m| *\frac{1}{1-q}\,.$ [/mm]

Weiter ist für $m [mm] \ge [/mm] 1$

    [mm] $|a_{m+1}-a_m| \le q^m*|a_1-a_0|\,.$ [/mm]

Denn: Induktion: Für [mm] $m=1\,$ [/mm] gilt

    [mm] $|a_2-a_1| \le q*|a_1-a_0|\,.$ [/mm]

$m [mm] \longrightarrow [/mm] m+1:$

    [mm] $|a_{m+2}-a_{m+1}| \le q*|a_{m+1}-a_m|$ [/mm]

gilt nach der vorausgesetzten Eigenschaft und mit der I.V. folgt

    [mm] $|a_{m+2}-a_{m+1}| \le q*|a_{m+1}-a_m| \le q*q^{m}*|a_1-a_0|=q^{m+1}*|a_1-a_0|\,.$ [/mm]

Also insgesamt

    [mm] $|a_n-a_m| \le |a_{m+1}-a_m| *\frac{1}{1-q} \le q^m*\frac{|a_1-a_0|}{1-q}\,.$ [/mm]

Jedenfalls, da ich die gleiche Abschätzung habe wie Du an der Stelle, bevor
ich etwas rotmarkiert habe, sieht es schon so aus, dass Du da keine
wesentlichen Rechenfehler gemacht hast. Vielleicht mag aber jmd. anderes
da auch noch detailliert(er) drübergucken....?!

> Am Schluss stehen ja nur konstanten, die ich doch so stehen
> lassen darf oder?
>  
> Wie muss ich nun N wählen sodass für m,n [mm]\ge[/mm] N:
> [mm]|a_{m}-a_{n}|[/mm] < [mm]\epsilon'?[/mm]

Warum nicht? Glaubst Du, sie laufen weg? ;-)

Zur Cauchyfolgeneigenschaft: Zu zeigen ist ja, dass, wenn [mm] $\epsilon [/mm] > 0$ vorgegeben wird,
dann ein [mm] $N=N_{\epsilon}$ [/mm] existiert mit

    [mm] $|a_n-a_m| [/mm] < [mm] \epsilon\,$ [/mm] für alle $n,m [mm] \ge N\,.$ [/mm]

Sei also [mm] $\epsilon [/mm] > [mm] 0\,.$ [/mm] Dann existiert wegen

    [mm] $q^m*\frac{|a_1-a_0|}{1-q} \to [/mm] 0$ ($m [mm] \to \infty$; [/mm] beachte $|q| < [mm] 1\,$!) [/mm]

ein [mm] $M\,$ [/mm] mit

    [mm] $|q^m*\frac{|a_1-a_0|}{1-q}| [/mm] < [mm] \epsilon$ [/mm] für alle $m [mm] \ge M\,.$ [/mm]

Für alle $n [mm] \ge [/mm] m [mm] \ge [/mm] M$ folgt nach obiger Rechnung

    [mm] $|a_n-a_m| \le q^m *\frac{|a_1-a_0|}{1-q} [/mm] < [mm] \epsilon\,.$ [/mm]

Also: Wähle [mm] $N:=M\,.$ [/mm]

>  Die Eigenschaft [mm]|a_{n+1}-a_n| \le[/mm] q * [mm]|a_n -a_{n-1}|[/mm] gilt
> für jedes n [mm]\ge[/mm] 1,
>  Es existiert ein Index [mm]N_1 sodass:\forall k\ge N_1 q^k[/mm] <
> [mm]\epsilon[/mm] da 0<q<1
>  Also wähle ich [mm]N:=N_1[/mm]
>  
> Ist q=1, dann erhalten wir:
>  [mm]|a_n[/mm] - [mm]a_m[/mm] | [mm]\le q^{m-1} |a_0-a_1| \sum_{i=1}^{n-m} q^i[/mm]  
> = [mm]|a_0-a_1| \sum_{i=1}^{n-m}[/mm] 1 = [mm]|a_0 -a_1|[/mm] (n-m)
>  Hier erziehlt man kein Resultat. Aber kann man anders
> Divergenz/Konvergenz zeigen bei q=1?

Du kannst doch direkt ein Gegenbeispiel hinschreiben:

    [mm] $a_n:=n$ [/mm] für alle $n [mm] \in \IN_0\,.$ [/mm]

Hier ist

    [mm] $|a_1-a_0|=1-0=1\,.$ [/mm]

    [mm] $|a_2-a_1|=2-1=1$ [/mm] und [mm] $|a_2-a_1|$ [/mm] erfüllt in der Tat

    [mm] $|a_2-a_1|=1 \le 1*|a_1-a_0|=1*1=1\,.$ [/mm]

Also? (Fazit: Dass die Abschätzungsmethode so nicht funktionierte, deutet
schonmal drauf hin, dass man da wohl eher nicht Konvergenz beweisen
kann. Es ist aber kein Beweis dafür, dass das vielleicht nicht doch gegangen
wäre, denn niemand sagt, dass Deine Abschätzungen *so gut wie
optimal* waren. Aber obiges Beispiel zeigt, dass man im Falle [mm] $q=1\,$ [/mm] im Allgemeinen
keine Aussage über Konvergenz/Divergenz treffen kann!
Beachte: Wenn mit einem $0 [mm] \le [/mm] q < 1$

    [mm] $|a_{n+1}-a_n| \le q*|a_{n}-a_{n-1}|$ [/mm] für alle $n [mm] \ge 1\,,$ [/mm]

dann gilt auch

    [mm] $|a_{n+1}-a_n| \le |a_n-a_{n-1}|$ [/mm] für alle $n [mm] \ge 1\,.$) [/mm]

P.S. Man könnte auch den Fall [mm] $q=0\,$ [/mm] oben mit einbeziehen. Dann wäre
zwar [mm] $a_1 \not=a_0$ [/mm] möglich, aber für alle $n [mm] \ge [/mm] 1$ wäre

    [mm] $a_n=a_1\,.$ [/mm]

Die Folge wäre also "extrem gut konstant" (aber nicht notwendig ganz
konstant!).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]