matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperCharaktergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Charaktergruppe
Charaktergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charaktergruppe: Charaktere
Status: (Frage) beantwortet Status 
Datum: 08:54 Di 22.03.2011
Autor: sbh

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Ich habe die endliche, abelsche Gruppe [mm] G= \IZ/4\IZ \times \IZ/4\IZ [/mm]
Da ja jedes Element aus der Gruppe nur die Ordnung 1,2 oder 4 haben kann, können die Chraktere [mm] (\chi:G-> \IC^{\*} ) [/mm] auch nur die Werte 1, -1, i, -i annehmen (da ja G isomorph zur Charaktergruppe)
Ist das soweit richtig?

Ich habe ja dann (1,0) und (0,1) als Erzeugende und müsste somit wohl 16 Charaktere erhalten.

DIe Gruppe G hat ja 16 Elemente und jedem Element wird ja durch dem Charakter eine von denen vierten-Einheitswurzeln zugeordnet.
Somit erhalte ich auch 16 Charakter???
Und kann  man die Zuordnung angeben?
Oder liege ich hier gerade total falsch?

Viele Grüße
sbh



        
Bezug
Charaktergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Di 22.03.2011
Autor: felixf

Moin,

> Ich habe die endliche, abelsche Gruppe [mm]G= \IZ/4\IZ \times \IZ/4\IZ[/mm]
>  
>  Da ja jedes Element aus der Gruppe nur die Ordnung 1,2
> oder 4 haben kann, können die Chraktere [mm](\chi:G-> \IC^{\*} )[/mm]
> auch nur die Werte 1, -1, i, -i annehmen (da ja G isomorph
> zur Charaktergruppe)
>  Ist das soweit richtig?
>  
> Ich habe ja dann (1,0) und (0,1) als Erzeugende und müsste
> somit wohl 16 Charaktere erhalten.
>
> DIe Gruppe G hat ja 16 Elemente und jedem Element wird ja
> durch dem Charakter eine von denen vierten-Einheitswurzeln
> zugeordnet.
>  Somit erhalte ich auch 16 Charakter???
>  Und kann  man die Zuordnung angeben?
>  Oder liege ich hier gerade total falsch?

das stimmt so.

Allgemein gilt: sind [mm] $G_1, G_2, [/mm] H$ Gruppen, so gilt [mm] $Hom(G_1 \times G_2, [/mm] H) [mm] \cong Hom(G_1, [/mm] H) [mm] \times Hom(G_2, [/mm] H)$. Und ist $G$ zyklisch der Ordnung $n$, so gibt es eine Bijektion $Hom(G, H) [mm] \to \{ h \in H \mid \text{Ordnung von } h \text{ teilt } n \}$. [/mm]

Wenn du hier [mm] $G_1 [/mm] = [mm] G_2 [/mm] = G = [mm] \IZ/4\IZ$ [/mm] und $H = [mm] \IC^\ast$ [/mm] (oder einfacher $H = [mm] \{ -1, 1, -i, i \}$) [/mm] nimmst, bekommst du genau das was du oben geschrieben hast :)

LG Felix


Bezug
                
Bezug
Charaktergruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Di 22.03.2011
Autor: sbh

Vielen Dank!

Gruß sbh

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]