matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikChebyshev-Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - Chebyshev-Ungleichung
Chebyshev-Ungleichung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chebyshev-Ungleichung: Tipp, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:57 So 11.12.2011
Autor: ella87

Aufgabe
Wie oft muss man eine faire Münze werfen, wenn man sich sicher sein will, dass die relative Häufigkeit für "Zahl" mit einer Wahrscheinlichkeit von mindestens 0,95  zwischen 0,48 und 0,52 liegt?

ehrlich: ich hab keine Ahnung!

Es schreit nach Chebyshev-Ungleichung, aber die versteh ich leider nicht, bzw. kann sie nicht anwenden.

wir haben die wie folgt definiert:

[mm]P \left( |X - E(X)| \ge c \right) \le \bruch{Var (X)}{c^2}[/mm]

[mm]P \left( |X - E(X)| \ge c \right)[/mm] gibt also die Wahrscheinlichkeit an, dass Ausprägungen (?) einer Zufallsvariable außerhalb eines Intervalls [E(X)-c , E(X)+c] liegt. oder?

hier ist ja genau nach dem Gegenteil gefragt.

Ich versuch mal zuzuordnen:
c=0,2
[mm]P \left( |X - E(X)| \ge c \right) = 1 - 0,95 = 0,05[/mm]

dann muss ich den Münzwurf irgendwie modellieren.
0: Kopf, 1:Zahl
P(X=0)=0,5=P(X=1)

E(X)=0,5*1 + 0,5*0=0,5

[mm]Var(X)=E(X^2)-E(X)^2[/mm]      hä?
Was ist denn [mm]E(X^2)[/mm]?

irgendwie muss ich ja auch noch "n" als Unbekannte Anzahl der Münzwürfe mit einbringen oder??

Ich versteh das nicht. Das kann doch nicht stimmen!


        
Bezug
Chebyshev-Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 11.12.2011
Autor: luis52

Moin,

wende die CU an auf die Zufallsvariable $X=$ relative Häufigkeit für "Zahl". Dafuer brauchst du [mm] $\operatorname{E}[X]$ [/mm] und [mm] $\operatorname{Var}[X]$ [/mm] ...

vg Luis

Bezug
                
Bezug
Chebyshev-Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 13.12.2011
Autor: ella87

Der Münzwurf ist ein Bernoulli-Experiment, also gilt:

[mm]E(X)=n*p=0,5n[/mm] und [mm] Var(X)=n*p*q=0,25n[/mm]

aber ich bekomme die Ungleichung nicht gebaut!

was ist denn mein c?
die Aufgabe sagt: "die relative Häufigkeit für Zahl soll mit einer W-keit von mindesens 0,95 zweischen 0,48 und 0,52 liegen"

das c bezieht sich doch auf die 0,02. aber ich brauche nicht die relative Häufigkeit, sondern die absolute, oder?
dann wäre [mm]c=0,02*n[/mm]

Dann habe ich:

[mm]P(|x-E(X)|\ge c) \le \bruch{Var(X)}{c^2 } = 0,05[/mm]

dann komme ich mit
[mm]\bruch{0,25n}{(0,02n)^2 }=0,05 [/mm] auf [mm] n = 12500[/mm]

stimmt das?



Bezug
                        
Bezug
Chebyshev-Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Di 13.12.2011
Autor: Al-Chwarizmi


> Der Münzwurf ist ein Bernoulli-Experiment, also gilt:
>  
> [mm]E(X)=n*p=0,5n[/mm] und [mm]Var(X)=n*p*q=0,25n[/mm]
>  
> aber ich bekomme die Ungleichung nicht gebaut!
>  
> was ist denn mein c?
> die Aufgabe sagt: "die relative Häufigkeit für Zahl soll
> mit einer W-keit von mindesens 0,95 zweischen 0,48 und 0,52
> liegen"
>  
> das c bezieht sich doch auf die 0,02. aber ich brauche
> nicht die relative Häufigkeit, sondern die absolute,
> oder?
>  dann wäre [mm]c=0,02*n[/mm]
>  
> Dann habe ich:
>  
> [mm]P(|x-E(X)|\ge c) \le \bruch{Var(X)}{c^2 } = 0,05[/mm]
>  
> dann komme ich mit
>  [mm]\bruch{0,25n}{(0,02n)^2 }=0,05[/mm] auf [mm]n = 12500[/mm]
>  
> stimmt das?


Hallo Ella,

ich bin gerade auf dasselbe Ergebnis gekommen.

LG


Bezug
                        
Bezug
Chebyshev-Ungleichung: viel weniger Würfe genügen !
Status: (Antwort) fertig Status 
Datum: 18:03 Di 13.12.2011
Autor: Al-Chwarizmi

Hallo ella87,

deine Rechnung mit der Tschebyschew - Ungleichung war
zwar richtig, aber dem sollte man noch anfügen, dass das
Ergebnis eben trotzdem ziemlich schlecht ist.
Durch eine Rechnung mit der Binomialverteilung (das ist
zwar nicht so einfach) oder mittels Approximation durch
die Normalverteilung (nicht schwierig) erhält man ein
viel besseres Ergebnis.
Effektiv reichen viel weniger als 12500 Würfe auch schon
aus, um die geforderte Wahrscheinlichkeit zu erreichen.

LG   Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]