matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikCorioliskraft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Corioliskraft
Corioliskraft < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Corioliskraft: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:44 Mi 15.01.2014
Autor: xx_xx_xx

Aufgabe
Ein Gewehr wird senkrecht zur Erdoberfläche nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit der Geschwindigkeit v. Stellen sie eine Bewegungsgleichung der Form:
[mm] \vektor{x'' \\ y''\\ z''}=? [/mm] auf die nur von v,g und [mm] \omega [/mm] und dem Winkel des Breitengrades [mm] \phi [/mm] abhängt

Ich wollte fragen, ob meine Lösung richtig ist.
Ich habe mir erstmal eine Skizze gemacht, die ich hier jetzt leider nicht reinstellen kann.
Ich habe ein kart. Koordinatensystem auf die Erde eingezeichnet, in der der Winkel [mm] \phi [/mm] eingezeichnet ist und meine z-Achse ist dann die Verlängerung der Ortsvektors. Und die y-Achse liegt tangential zur Erdoberfläche.
Ich hoffe, das war verständlich!
In diesem Fall lässt sich [mm] \vec{\omega}=\vektor{0 \\ 0\\ \omega} [/mm] auch in diesem kartesichen Koordinatensystem darstellen, als [mm] \vec{\omega}=\vektor{0 \\ \omega cos(\phi)\\ \omega sin(\phi)} [/mm]
Der Abschuss erfolgt nur in z-Richtung, also [mm] \vec{v}=\vektor{0 \\ 0\\ v} [/mm]

Corioliskraft: [mm] \vec{F}=-2m(\omega \times [/mm] v)= [mm] -2m\vektor{\omega cos(\phi)v \\ 0\\ 0} [/mm]

Und da [mm] \vec{F}=m*a=m*\vektor{x'' \\ y''\\ z''} [/mm]

[mm] \Rightarrow \vektor{x'' \\ y''\\ z''}=-2*\vektor{\omega cos(\phi)v \\ 0\\ 0} [/mm]

Ist das so richtig?

Danke!
LG

        
Bezug
Corioliskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mi 15.01.2014
Autor: leduart

Hallo
in deiner Bewegungsgleichung fehlt  g in z Richtung,
der Rest scheint mir richtig
du kannst eigene Skizzen leicht anhängen, wenn sie nicht zu groß sind
klick auf Bildanhang,  um zu sehen wie, hochladen kannst du dann nach absenden.
Gruss leduart

Bezug
                
Bezug
Corioliskraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 15.01.2014
Autor: xx_xx_xx

Ja, also genauer müsste dann gelten [mm] \vec{v}=\vektor{0 \\ 0 \\ -gt}, [/mm] oder?

Vielen Dank!
LG

Bezug
                        
Bezug
Corioliskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Mi 15.01.2014
Autor: leduart

Hallo
Nein die Beschleuinigung gehört in die Differentialgleichug für r''
Gruß leduart

Bezug
                                
Bezug
Corioliskraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mi 15.01.2014
Autor: xx_xx_xx

Wäre sie dann doch auch mit [mm] \vektor{x'' \\ y'' \\ z''}=-2*\vektor{-\omega *cos(\phi)*g*t \\ 0 \\ 0} [/mm]

Oder ist das so nicht richtig? Dann verstehe ich nicht, wie sonst...

Danke!
LG

Bezug
                                        
Bezug
Corioliskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mi 15.01.2014
Autor: leduart

Hallo
nein

$ [mm] \vektor{x'' \\ y'' \\ z''}=\cdot{}\vektor{2*\omega \cdot{}cos(\phi)\cdot{}g\cdot{}t \\ 0 \\ -g} [/mm] $

Gruß leduart

Bezug
                                                
Bezug
Corioliskraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 15.01.2014
Autor: xx_xx_xx

Okay...

Also habe ich dann

[mm] \vec{F}=-2*m(\vec{\omega} \times \vec{v})-m\vec{g}-m[\vec{\omega} \times (\vec{\omega} \times \vec{r})] [/mm]

= [mm] -2m\vektor{\omega*cos(\phi)*g*t \\ 0 \\ 0}-m*\vektor{0 \\ 0 \\ g}-m*(\vektor{0 \\ \omega * cos(\phi) \\ \omega * sin(\phi)} \times [\vektor{0 \\ \omega * cos(\phi) \\ \omega * sin(\phi)} \times \vektor{0 \\ 0\\ h}]) [/mm]

[mm] \gdw \vektor{x'' \\ y'' \\ z''}=\vektor{-2*\omega*cos(\phi)*g*t \\ 0 \\ -g}-(\vektor{0 \\ \omega * cos(\phi) \\ \omega * sin(\phi)} \times \vektor{\omega*cos(\phi)*h \\ 0 \\ 0}) [/mm]

[mm] \gdw \vektor{x'' \\ y'' \\ z''}=\vektor{-2*\omega*cos(\phi)*g*t \\ 0 \\ -g}-\vektor{\omega^{2}*sin(\phi) * cos(\phi)*h \\ -\omega^{2} * cos^{2}(\phi)*h \\ 0} [/mm]

[mm] \gdw \vektor{x'' \\ y'' \\ z''}=\vektor{\omega*cos(\phi)*(-2*g*t-\omega*sin(\phi)*h) \\ \omega^{2} * cos^{2}(\phi)*h \\ -g} [/mm]

Ist es das?

Danke!
LG

Bezug
                                                        
Bezug
Corioliskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mi 15.01.2014
Autor: leduart

Hallo
wenn du r'' aufstellst, sann noch allgemein mit [mm] v=r'=(x',y',z')^T [/mm]
nur die Anfangsbedingung ist dann [mm] v(0)=(0,0,v_0)^T [/mm]
also halte ich deine Dgl für falsch.
Gruss leduart

Bezug
                                                                
Bezug
Corioliskraft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 15.01.2014
Autor: xx_xx_xx

War denn die Gleichung/ der Ansatz an sich richtig, also:

[mm] m*\vec{a}=-2*m(\vec{\omega} \times \vec{v})-m*g-m*\vec{\omega} \times (\vec{\omega} \times \vec{r}) [/mm]

und allgemeiner dann:

[mm] \vektor{x'' \\ y'' \\ z''}=-2*\vektor{0 \\ \omega*cos(\phi) \\ \omega*sin(\phi)} \times \vektor{x' \\ y' \\ z'}-\vektor{0 \\ 0 \\ g}-\vektor{0 \\ \omega*cos(\phi) \\ \omega*sin(\phi)} \times (\vektor{0 \\ \omega*cos(\phi) \\ \omega*sin(\phi)} \times \vektor{x \\ y \\ z} [/mm] )

mit der Anfangsbedingung [mm] \vec{r'}=\vec{v}=\vektor{0 \\ 0 \\ v_{0}} [/mm]

Oder ist mein Ansatz schon falsch?

Danke!
LG

Bezug
                                                                        
Bezug
Corioliskraft: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mi 15.01.2014
Autor: leduart

Hallo
der Ansatz ist jetzt richtig, die Produkte solltest du wohl noch ausführen,
Gruß leduart

Bezug
                                                                                
Bezug
Corioliskraft: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Do 16.01.2014
Autor: xx_xx_xx

Toll!
Vielen, vielen Dank!
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]