matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisCosh Ableitung  der Umkehrfkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Cosh Ableitung der Umkehrfkt
Cosh Ableitung der Umkehrfkt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cosh Ableitung der Umkehrfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Do 19.01.2006
Autor: donpsycho

Hiho erstmal :)

ich find es immer schade wenn ich nachfragen muss aber irgentwie steh ich auf dem Schlauch.
Also Ich habe die Aufgabe bekommen die Ableitung der Umkehrfunktion von cosh [x] zu bilden.

[mm] Cosh(x)=\bruch{1}{2} [/mm] (  [mm] e^{x} [/mm] +  [mm] e^{ - x }) [/mm]

Nacheinigem umformen hatte ich dann die Umkehrfunktion

[mm] f(y)^{-1} [/mm] = ln ( y  [mm] \pm \wurzel{ y^{2} -1} [/mm] )

heraus, welches auch die area cosinus hyperbolicus ist.
Nun wollte ich mit der Ableitung dieser Funktion weiter machen. Habe mich dann dafür entschieden es über den Weg:

f(y) ^{-1} ' =  [mm] \bruch{1}{f(x)'} [/mm]

Denn die Ableitung von Cosh (x) also unserem f(x) ist Sinh (x)

dann erhalte ich

f(y) ^{-1} ' =  [mm] \bruch{2}{e^{x} - e^{-x}} [/mm]

nun bin ich mir nicht sicher wie ich weiter machen soll... ich hab versucht

[mm] e^{x} [/mm] = y  [mm] \pm \wurzel{ y^{2} -1} [/mm]

einzusetzten doch hab dann keine möglichkeit gefunden es weiter zu vereinfachen... im Internet hab ich

[mm] \bruch{1}{ \wurzel{x^{2} -1}} [/mm]

gefunden für die Ableitung von arcosh...

könnt ihr mir einen tipp geben ?

Danke

        
Bezug
Cosh Ableitung der Umkehrfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Do 19.01.2006
Autor: mathmetzsch

Hallo,

ich würde das direkt ableiten. Du brauchst doch nur die Kettenregel anzuwenden. Die Ableitung des ln ist auch klar. Dann folgt:

[mm] (ln(y+\wurzel{y^{2}-1}))' [/mm]

[mm] =\bruch{1+\bruch{y}{\wurzel{y^{2}-1}}}{y+\wurzel{y^{2}-1}} [/mm]

(wenn ich mich nicht verrechnet habe!) :-)

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]