matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL-Systeme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL-Systeme
DGL-Systeme < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL-Systeme: Vorgehen
Status: (Frage) beantwortet Status 
Datum: 17:46 Sa 04.02.2006
Autor: alexus

Aufgabe
Finden sie die Lösung des folgenden Systems von DGls:

3y1(t)+y2(t)-y3(t)+y4(t) =y1'(t)
y1(t)+3y2(t)+y3(t)-y4(t) =y2'(t)
-y1(t)+y2(t)+3y3(t)+y4(t)=y3'(t)
y1(t)-y2(t)+y3(t)+3y4(t) =y4'(t)

mit den Anfangsbedingungen
y1(0)=0, y2(0)=1, y3(0)=1, y4(0)=2

Hi
Diese Aufgabe soll ich lösen. Da ich keine Ahnung von DGL-Systemen habe, wollt ich wissen, wie man da vorgeht. Nimmt man jetzt auch einfach an, dass z.b. y1(t)=exp(at), y2(t)=exp(bt), y3(t)=exp(ct) und y4(t)=exp(dt)?

alexus

        
Bezug
DGL-Systeme: zu lang
Status: (Antwort) fertig Status 
Datum: 19:42 Sa 04.02.2006
Autor: leduart

Hallo alexus
> Finden sie die Lösung des folgenden Systems von DGls:
>  
> 3y1(t)+y2(t)-y3(t)+y4(t) =y1'(t)
>  y1(t)+3y2(t)+y3(t)-y4(t) =y2'(t)
>  -y1(t)+y2(t)+3y3(t)+y4(t)=y3'(t)
>  y1(t)-y2(t)+y3(t)+3y4(t) =y4'(t)
>  
> mit den Anfangsbedingungen
>  y1(0)=0, y2(0)=1, y3(0)=1, y4(0)=2
>  Hi
>  Diese Aufgabe soll ich lösen. Da ich keine Ahnung von
> DGL-Systemen habe, wollt ich wissen, wie man da vorgeht.

Wieso kannst du so ne Aufgabe kriegen, wenn ihr so was nie gelernt habt?

> Nimmt man jetzt auch einfach an, dass z.b. y1(t)=exp(at),
> y2(t)=exp(bt), y3(t)=exp(ct) und y4(t)=exp(dt)?

Nein, so einfach ists nicht, du nimmst y,y' als Vektor, das Koeffizientenschema als Matrix und musst die Eigenwerte und eigenvektoren bestimmen.
Das alless hier vorzuführen, wär ein Lehrgang. Du musst also schon in nem Buch oder nem Skript aus dem Netz dich erst mal damit beschäftigen und dann Fragen stellen, wenn du was nicht kapierst.
Ich weiss nicht so genau was techn. Kybernetik ist, aber wahrscheinlich sollt ihr doch auch nicht einfach Rezepte lernen?
Gruss leduart


Bezug
                
Bezug
DGL-Systeme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Sa 04.02.2006
Autor: alexus

Also, das Problem ist halt, dass ich die Aufgabe lösen muss und wir bisher noch nix über DGls hatten. Kann aber sein, dass das Thema noch drankommt, wir haben ja noch 2 Wochen Zeit die Aufgaben zu lösen. Also dein "Rezept"
könnt ich glaub schon anwenden. Wie man Eigenwerte und Eigenvektoren berechnet weiß ich. Das Problem daran wäre wohl nur, dass ich keine Ahnung hätte, warum das, was ich mache überhaupt funktioniert.

alexus

Bezug
        
Bezug
DGL-Systeme: Ansatz ähnlich
Status: (Antwort) fertig Status 
Datum: 00:50 So 05.02.2006
Autor: mathemaduenn

Hallo alexus,
Der Ansatz ist ähnlich:
[mm]\vec{y}(t)=\vec{c}*e^{\lambda t}[/mm]
Dann ist [mm]\vec{y}'(t)=\lambda\vec{c}*e^{\lambda t}[/mm] und wenn man das in die DGL einsetzt ergibt sich:
[mm]\lambda\vec{c}*e^{\lambda t}=A\vec{c}*e^{\lambda t}[/mm]
Und das gilt eben wenn
[mm]\lambda\vec{c}=A\vec{c}[/mm]
Also erhält man die Lösung indem man die Eigenwerte und Eigenvektoren der Matrix A ausrechnet.
viele Grüße
mathemaduenn

Bezug
                
Bezug
DGL-Systeme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 So 05.02.2006
Autor: alexus

Also die  Eigenwerte der Matrix A hab ich schon berechnet, da kommt {0,4,4,4} raus. Mir ist auch klar, dass die Eigenwerte jetzt dem entsprechen müssen, was du  [mm] \lambda [/mm] genannt hast, also muss nur noch der Vektor  [mm] \vec{c} [/mm] bestimmt werden. Allerdings blick ich nicht, wozu man noch die Eigenvektoren brauch. Kann man nicht einfach die Anfangsbedingungen benutzen um  [mm] \vec{c} [/mm] zu bestimmen?

alexus

Bezug
                        
Bezug
DGL-Systeme: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 So 05.02.2006
Autor: mathemaduenn

Hallo alexus,
Hast Du ein Paar Eigenwert ( [mm] \lambda_1 [/mm] ) Eigenvektor ( [mm] c_1 [/mm] ) gefunden dann ist [mm]\vec{y}(t)=a* \vec{c_1}*e^{\lambda_1 t}[/mm] eine Lsg. Du bekommst 4 solche Lösungen heraus und da jede Linearkombination dieser Lösungen die DGL löst bekommst Du also noch 4 Variable für die Anfangsbedingungen.
viele Grüße
mathemaduenn

Bezug
                                
Bezug
DGL-Systeme: richtig?
Status: (Frage) für Interessierte Status 
Datum: 16:38 So 05.02.2006
Autor: alexus

So, habs jetzt so gerechnet wie du gesagt hasch und folgendes rausbekommen:
[mm] \vec{y}(t)=-1/2 \vektor{1\\-1\\1\\-1}+1/4 \vektor{1\\1\\0\\0}e^{4t}+3/4 \vektor{-1\\0\\1\\0}e^{4t}+3/4 \vektor{1\\0\\0\\1}e^{4t} [/mm]

Die Vektoren sind jeweils die Eigenwerte und die Koeffizienten hab ich aus dem Gleichungssystem von den Anfangsbedingungen raus. Ich hoffe das passt jetzt.

alexus

Bezug
                                        
Bezug
DGL-Systeme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:03 Mi 08.02.2006
Autor: matux

Hallo alexus!



Leider konnte Dir keiner mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]