matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 1.Ordnung Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL 1.Ordnung Substitution
DGL 1.Ordnung Substitution < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1.Ordnung Substitution: DGL lösen mit Substitution
Status: (Frage) statuslos Status 
Datum: 19:40 Do 09.01.2025
Autor: TimonHasstMathe

Aufgabe
Für [mm] $\left| t \right| [/mm] $ < 1 betrachte die DGL
[mm] $\left( 1 - t^2 \right)x' [/mm] - tx + 1=0$.
Bestimmen Sie eine allgemeine Lösung der DGL und sodann lösen Sie das Anfangswertproblem
[mm] $\left( 1-t^2 \right) [/mm] x' - tx + 1 =0$
$x [mm] \left( 0 \right) [/mm] = 1$.

Hallo Zusammen,
ich bin mal wieder am verzweifeln in Mathe. Ich muss wie in der Aufgabenstellung oben eine allgemeine Lösung der DGL angeben. Da es sich nach meiner Einschätzung um eine nicht-lineare DGL 1.Ordnung handelt, wäre mein erster Schritt die Trennung der Variablen gewesen. Da diese sich jedoch nicht trennen lassen, muss glaube ich substituiert werden. Daran scheitere ich im Moment. Durch Hilfe bin ich bereits soweit gekommen. Verstehe aber erstens nicht genau wie und warum man auf den Ansatz für die Substitution kommt und ob das dann überhaupt die allgemeine Lösung ist.
Hier sind meine Berechnungen:

1. Variablen trennen:

$ [mm] \left( 1-t^2 \right) [/mm] x' - tx + 1 = 0  [mm] \Rightarrow [/mm] x' - [mm] \bruch{t}{1-t^2} [/mm] x = - [mm] \bruch{1}{1-t^2}$ [/mm]

Substitution:

[mm] $x_{\left( t \right)} [/mm] = [mm] e^{\int_{}^{} u_\left(t\right)}$ [/mm]  
mit
[mm] $u=1-t^2$ [/mm]

[mm] $\bruch{du}{dt} [/mm] = -2t [mm] \Rightarrow [/mm] dt = - [mm] \bruch{du}{2t}$ [/mm]

[mm] $\Rightarrow [/mm] - [mm] \bruch{1}{2} \int_{}{} \bruch{1}{t} \* u\,du$ $\Rightarrow [/mm] - [mm] \bruch{1}{4} \* \bruch{u^2}{t}$ [/mm]    mit    $u = [mm] 1-t^2$ [/mm]

[mm] $\Rightarrow [/mm] - [mm] \bruch{1}{4} \* \left( \bruch{1}{t} - t^3 \right)$ [/mm]

[mm] $\Rightarrow x_{\left(t\right)} [/mm] = [mm] e^{- \bruch{1}{4} \left( \bruch{1}{t} - t^3 \right)}$ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]