matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 1. Ordnung homogen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordnung homogen
DGL 1. Ordnung homogen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung homogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 07.06.2006
Autor: Sappy80

Die Aufgabe
Aufgabe
4y'=y/x²


hab ich durch umformen auf diese Form gebracht.

y'= y* [mm] \bruch{1}{4x²} [/mm]

Dann komme ich durch auf Trennung der Variablen und Integration auf

ln lyl = -4*ln(x)
(wobei ich mir nicht sicher bin, ob das so richtig ist.

Jetzt müsste ich doch die efunktion anwenden. Wie funktioniert das wenn auch der rechten Seite auch ein ln steht?
Dank schonmal für eure Unterstützung! LG Sappy





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
DGL 1. Ordnung homogen: Korrektur (edit.)
Status: (Antwort) fertig Status 
Datum: 16:07 Mi 07.06.2006
Autor: Roadrunner

Hallo Sappy,

[willkommenmr] !!


> Dann komme ich durch auf Trennung der Variablen und
> Integration auf
>  
> ln lyl = -4*ln(x)

Das stimmt auf der rechten Seite leider nicht!

Da muss durch die Integration von [mm] $\bruch{1}{4*x^2} [/mm] \ = \ [mm] \bruch{1}{4}*x^{-2}$ [/mm] und Anwendung der MBPotenzregel stehen: [mm] $\bruch{1}{4}*\bruch{x^{-1}}{-1}+ [/mm] \ [mm] \red{C} [/mm] \ = \ [mm] -\bruch{1}{4}*x^{-1}+C [/mm] \ = \ [mm] -\bruch{1}{4x}+C$ [/mm] .


Du hast also auch noch die Integrationskonstante $+ \ C$ vergessen.


> Jetzt müsste ich doch die efunktion anwenden. Wie
> funktioniert das wenn auch der rechten Seite auch ein ln
> steht?

Es würde dann exakt wie auf der linken Seite auch funktionieren, dass die e-Funktion den [mm] $\ln(...)$ [/mm] aufhebt. Zuvor sollte man nur eines der MBLogarithmusgesetze anwenden: [mm] $m*\log_b(a) [/mm] \ = \ [mm] \log_b\left(a^m\right)$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
DGL 1. Ordnung homogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mi 07.06.2006
Autor: Sappy80

Hallo Roadrunner, thx für die nette Begüßung und Reaktion :) Ja, da hab ich gleich mehrere Böcke geschossen, aber stimmt das

$ [mm] -4\cdot{}x^{-2} [/mm] $

muss es nicht [mm] 4*x^{-2} [/mm] (4*x in klammern) weil doch aus der Umformung
$ [mm] \bruch [/mm] {1}{4*x²}$ entsteht oder?

Bezug
                        
Bezug
DGL 1. Ordnung homogen: ist korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Mi 07.06.2006
Autor: Roadrunner

Hallo Sappy!


Da habe ich mich etwas verhauen ... [sorry] !

Es ist aber in der obigen Antwort nun korrigiert.


Gruß vom
Roadrunner


Bezug
                                
Bezug
DGL 1. Ordnung homogen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Mi 07.06.2006
Autor: Sappy80

kein thema,..
vielen dank :) Hier wird man echt geholfen!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]