matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 1. Ordnung  mit Subst.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordnung mit Subst.
DGL 1. Ordnung mit Subst. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung mit Subst.: Ansatzfrage
Status: (Frage) beantwortet Status 
Datum: 18:04 Di 09.06.2009
Autor: superkato

Aufgabe
DGL: x*y'-y = [mm] x*cos^2(y/x) [/mm]  

Hallo,

ich versuche gerade folgende Klausurübungsaufgabe zu lösen aber irgendwie bin ich mir nicht sicher ob das so klappt:

xy'-y=xcos²(y/x)

mit Subst:

u=y/x
y=xu
y'=u+xu'

x(u+xu')-xu=xcos²(u) | ausmulti.

xu+x²u'-xu=xcos²(u) | xu und -xu heben sich auf

x²u'=xcos²(u) | :x²

u'=(xcos²(u))/x² | trennung der variablen

du/dx = (xcos²(u))/x² | *dx

du = (xcos²(u))/x² *dx

du = 1/x² x*cos²(u)*dx

du = 1/x cos²(u)*dx |:cos²(u)

du/cos²(u)= dx/x

integral (du/cos²(u)) mit stammintegral dx/cos²(ax) [a=1]

= tan(u)/1 = tan(u)

dx/x = ln |x| + ln |C|

tan(u) = ln |x| + ln |c|

Rücksubst:

tan(y/x) = ln|x| + ln |c| so weiter weis ich jetzt wirklich nicht.

Kann mir jemand helfen das zu ende zu führen oder fehler zu finden?

lg Anja


Ich habe diese Frage auch hier gestellt:

http://www.matheboard.de/thread.php?threadid=393459&sid=7124a3d56ba3db7612a532f063a0f6c2

http://www.onlinemathe.de/forum/Problem-mit-DGL-substitution-

Da mir es sehr wichtig ist die Lösung schnell herauszufinden.

Laut meinem Prof soll diese sein

y(x)=x arctan(ln|x|+c) C element von R

        
Bezug
DGL 1. Ordnung mit Subst.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Di 09.06.2009
Autor: MathePower

Hallo superkato,


[willkommenmr]


> DGL: x*y'-y = [mm]x*cos^2(y/x)[/mm]
> Hallo,
>  
> ich versuche gerade folgende Klausurübungsaufgabe zu lösen
> aber irgendwie bin ich mir nicht sicher ob das so klappt:
>  
> xy'-y=xcos²(y/x)
>  
> mit Subst:
>  
> u=y/x
>  y=xu
>  y'=u+xu'
>  
> x(u+xu')-xu=xcos²(u) | ausmulti.
>  
> xu+x²u'-xu=xcos²(u) | xu und -xu heben sich auf
>  
> x²u'=xcos²(u) | :x²
>  
> u'=(xcos²(u))/x² | trennung der variablen
>  
> du/dx = (xcos²(u))/x² | *dx
>  
> du = (xcos²(u))/x² *dx
>  
> du = 1/x² x*cos²(u)*dx
>  
> du = 1/x cos²(u)*dx |:cos²(u)
>  
> du/cos²(u)= dx/x
>  
> integral (du/cos²(u)) mit stammintegral dx/cos²(ax) [a=1]
>  
> = tan(u)/1 = tan(u)
>  
> dx/x = ln |x| + ln |C|
>  
> tan(u) = ln |x| + ln |c|
>  
> Rücksubst:
>  
> tan(y/x) = ln|x| + ln |c| so weiter weis ich jetzt wirklich
> nicht.
>  
> Kann mir jemand helfen das zu ende zu führen oder fehler zu
> finden?


Nun, wende den [mm]\operatorname{arctan}[/mm] darauf an,
und forme nach y um:

[mm]y=x*\operatorname{arctan}\left(\operatorname{ln}\vmat{x}+\operatorname{ln}\vmat{C}\right)[/mm]  


> lg Anja
>  
>
> Ich habe diese Frage auch hier gestellt:
>  
> http://www.matheboard.de/thread.php?threadid=393459&sid=7124a3d56ba3db7612a532f063a0f6c2
>  
> http://www.onlinemathe.de/forum/Problem-mit-DGL-substitution-
>  
> Da mir es sehr wichtig ist die Lösung schnell
> herauszufinden.
>  
> Laut meinem Prof soll diese sein
>
> y(x)=x arctan(ln|x|+c) C element von R


Um jetzt auf diese Lösung zu kommen, definierst Du [mm]c:=\operatorname{ln}\vmat{C}[/mm]


Gruß
MathePower

Bezug
                
Bezug
DGL 1. Ordnung mit Subst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Di 09.06.2009
Autor: superkato

Also kann man generell sagen, dass man mittels arctan das y entbindet :)

ihr seid perfekt! vielen Dank! damit ist die Aufgabe gelöst!


sieht das dann so richtig aus ?

tan(y/x) = ln|x|+ln|c|  |*arctan ; |*x

y = x arctan (ln|x|+ln|c|)



Bezug
                        
Bezug
DGL 1. Ordnung mit Subst.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 09.06.2009
Autor: MathePower

Hallo superkato,

> Also kann man generell sagen, dass man mittels arctan das y
> entbindet :)
>  
> ihr seid perfekt! vielen Dank! damit ist die Aufgabe
> gelöst!
>  


Danke für die Blumen.


>
> sieht das dann so richtig aus ?
>  
> tan(y/x) = ln|x|+ln|c|  |*arctan ; |*x
>  
> y = x arctan (ln|x|+ln|c|)
>


Das geht so:

[mm]\tan\left(\bruch{y}{x}\right)=\ln\vmat{x}+\ln\vmat{C}[/mm]

Nun wird auf beide Seiten der [mm]\operatorname{arctan}[/mm] angewendet:

[mm]\operatorname{arctan}\left( \ \tan\left(\bruch{y}{x}\right) \ \right)=\operatorname{arctan}\left(\ln\vmat{x}+\ln\vmat{C}\right)[/mm]

[mm]\Rightarrow \bruch{y}{x}=\operatorname{arctan}\left(\ln\vmat{x}+\ln\vmat{C}\right)[/mm]

[mm]\Rightarrow y= x*\operatorname{arctan}\left(\ln\vmat{x}+\ln\vmat{C}\right)[/mm]


Gruß
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]