matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL: Lösungsansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL: Lösungsansatz
DGL: Lösungsansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Lösungsansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 04.07.2009
Autor: s3rial_

Aufgabe
Berechnen Sie jeweils durch Variation der Konstanten die algeimeine Lösung der DGL.

b)
xy' = [mm] x^2 [/mm] -y

Guten Abend,

Ich weiß nicht was ich als Störfunktion behandeln soll. Gibt es da eine bestimmte Regel die man wissen muss? Habe jetzt schon mehrere anläufe versucht, aber das hat alles zu nichts geführt...

schonmal vorab, danke für die Mühe
gruß
s3

        
Bezug
DGL: Lösungsansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Sa 04.07.2009
Autor: MathePower

Hallo s3rial_,

> Berechnen Sie jeweils durch Variation der Konstanten die
> algeimeine Lösung der DGL.
>  
> b)
>  xy' = [mm]x^2[/mm] -y
>  Guten Abend,
>  
> Ich weiß nicht was ich als Störfunktion behandeln soll.
> Gibt es da eine bestimmte Regel die man wissen muss? Habe
> jetzt schon mehrere anläufe versucht, aber das hat alles
> zu nichts geführt...


Schreibe die DGL doch einfach um:

[mm]xy' = x^{2} -y \gdw x*y'+y=x^{2}[/mm]

Bestimme zunächst die Lösung de homogenen DGL

[mm]x*y'+y=0[/mm]

Danach variierst Du die Konstante, die da in der Lösungsfunktion
vorhanden ist, in dem Du sie von x abhängig machst.

Das wir dann in die inhomogene DGL eingesetzt:

[mm]x*y'+y=x^{2}[/mm]

Daraus ergibt sich dann die Konstante als Funktion von x.


>  
> schonmal vorab, danke für die Mühe
>  gruß
>  s3


Gruß
MathePower

Bezug
                
Bezug
DGL: Lösungsansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Sa 04.07.2009
Autor: s3rial_

Muss ich da eine bestimmte Form bei einhalten, oder kann ich die Funktion so umschreiben, wie es mir in den kram passt?

Bezug
                        
Bezug
DGL: Lösungsansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Sa 04.07.2009
Autor: schachuzipus

Hallo S3rial,

> Muss ich da eine bestimmte Form bei einhalten, oder kann
> ich die Funktion so umschreiben, wie es mir in den kram
> passt?


Nein, es steht dir frei, jedwede legale Umformung durchzuführen.


Aber sinnvoll ist es natürlich, es so umzuformen, dass man eine bekannte Struktur erhält, auf die man ein "Lösungsschema" loslassen kann - wie hier ...

LG

schachuzipus

Bezug
                                
Bezug
DGL: Lösungsansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Sa 04.07.2009
Autor: s3rial_

Hallo,
falls einer kurz Zeit hat, könnte er dann diese Aufgabe kurz nachrechnen, meine Lösung passt weder mit der Lösung vom Prof. zusammen noch mit dem vom Wolfram-alpha...

Meine Lösung
[mm] y=\bruch {x^4+C} [/mm] {4xy}
Prof. Lösung
[mm] y=\bruch {x^3+C} [/mm] {3x}
Wolfram-alpha
[mm] http://www08.wolframalpha.com/input/?i=xy%27%3Dx^2-y [/mm]


Bezug
                                        
Bezug
DGL: Lösungsansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Sa 04.07.2009
Autor: s3rial_

Kommando zurück, habs gerade selber gefunden, trotzdem danke für die Mühe wer sich die gemacht hat.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]