matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ordinary Differential Equations" - DGL lösen
DGL lösen < Ordinary Differential Equations < Differential Equations < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials

DGL lösen: Rückfrage, Idee, Tipp, Hilfe
Status: (Question) answered Status 
Date: 14:32 Do 17/05/2018
Author: Dom_89

Aufgabe
Bestimme für x > 0 die allgemeine Lösung der Differentialgleichung

[mm] y`(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}} [/mm]

Hallo,

hier einmal mein bisheriger Ansatz:

[mm] y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}} [/mm]

1)

[mm] y'(x)-\bruch{y(x)}{x}=0 [/mm]

[mm] h(x)=\integral [/mm] a(x) dx = [mm] \integral -\bruch{1}{x} [/mm] dx = -ln(x)+C

[mm] y_{h}(x) [/mm] = [mm] C*e^{-h(x)} [/mm] = [mm] C*e^{ln(x)} [/mm] = C*x

2)

[mm] y_{s}(x) [/mm] = [mm] e^{-h(x)} \integral (b(x)*e^{h(x)})dx [/mm]

[mm] y_{s}(x) [/mm] = [mm] e^{ln(x)} \integral (\bruch{x}{(x+1)^{2}}*e^{-ln(x)})dx [/mm]

[mm] y_{s}(x) [/mm] = x [mm] \integral (\bruch{x}{(x+1)^{2}}*\bruch{1}{x})dx [/mm]

An dieser Stelle bin ich mir nun leider unsicher, ob ich so richtig zusammengefasst/vereinfacht habe!?

Als Lösung ist - [mm] \bruch{x}{x+1}+Cx [/mm] angegeben - doch hierauf komme ich irgendwie nicht. Könnt ihr mir da helfen?

Vielen Dank im Voraus

        
Bezug
DGL lösen: Antwort
Status: (Answer) finished Status 
Date: 14:59 Do 17/05/2018
Author: fred97


> Bestimme für x > 0 die allgemeine Lösung der
> Differentialgleichung
>  
> [mm]y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}}[/mm]
>  Hallo,
>  
> hier einmal mein bisheriger Ansatz:
>  
> [mm]y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}}[/mm]
>  
> 1)
>  
> [mm]y'(x)-\bruch{y(x)}{x}=0[/mm]
>  
> [mm]h(x)=\integral[/mm] a(x) dx = [mm]\integral -\bruch{1}{x}[/mm] dx =
> -ln(x)+C
>  
> [mm]y_{h}(x)[/mm] = [mm]C*e^{-h(x)}[/mm] = [mm]C*e^{ln(x)}[/mm] = C*x
>  
> 2)
>  
> [mm]y_{s}(x)[/mm] = [mm]e^{-h(x)} \integral (b(x)*e^{h(x)})dx[/mm]
>  
> [mm]y_{s}(x)[/mm] = [mm]e^{ln(x)} \integral (\bruch{x}{(x+1)^{2}}*e^{-ln(x)})dx[/mm]
>  
> [mm]y_{s}(x)[/mm] = x [mm]\integral (\bruch{x}{(x+1)^{2}}*\bruch{1}{x})dx[/mm]
>  
> An dieser Stelle bin ich mir nun leider unsicher, ob ich so
> richtig zusammengefasst/vereinfacht habe!?
>  

Du kannst noch mehr  vereinfachen.

Im Integral kürze noch  ein  x raus.  Zu bestimmen hast Du dann  eine Stammfunktion von [mm] 1/(x+1)^2. [/mm]

Damit kommst du  dann auch  auf untenstehende Lösung.


> Als Lösung ist - [mm]\bruch{x}{x+1}+Cx[/mm] angegeben - doch
> hierauf komme ich irgendwie nicht. Könnt ihr mir da
> helfen?
>  
> Vielen Dank im Voraus


Bezug
                
Bezug
DGL lösen: Mitteilung
Status: (Statement) No reaction required Status 
Date: 15:10 Do 17/05/2018
Author: Dom_89

Hallo fred97,

hat alles geklappt !

Vielen Dank für die schnelle Hilfe

Viele Grüße

Dom_89

Bezug
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 3h 56m 4. angela.h.b.
SGeradEbene/Abstand eines Punktes
Status vor 9h 46m 4. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 14h 54m 6. HJKweseleit
ULinAAb/Kern und Bild bestimmen
Status vor 19h 27m 5. Dom_89
DiffGlGew/Lösung der DGL
Status vor 20h 22m 4. Dom_89
SGeradEbene/Parallele Ebenen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]