matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - DGL lösen
DGL lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL lösen: Rückfrage, Idee, Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 17.05.2018
Autor: Dom_89

Aufgabe
Bestimme für x > 0 die allgemeine Lösung der Differentialgleichung

[mm] y`(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}} [/mm]

Hallo,

hier einmal mein bisheriger Ansatz:

[mm] y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}} [/mm]

1)

[mm] y'(x)-\bruch{y(x)}{x}=0 [/mm]

[mm] h(x)=\integral [/mm] a(x) dx = [mm] \integral -\bruch{1}{x} [/mm] dx = -ln(x)+C

[mm] y_{h}(x) [/mm] = [mm] C*e^{-h(x)} [/mm] = [mm] C*e^{ln(x)} [/mm] = C*x

2)

[mm] y_{s}(x) [/mm] = [mm] e^{-h(x)} \integral (b(x)*e^{h(x)})dx [/mm]

[mm] y_{s}(x) [/mm] = [mm] e^{ln(x)} \integral (\bruch{x}{(x+1)^{2}}*e^{-ln(x)})dx [/mm]

[mm] y_{s}(x) [/mm] = x [mm] \integral (\bruch{x}{(x+1)^{2}}*\bruch{1}{x})dx [/mm]

An dieser Stelle bin ich mir nun leider unsicher, ob ich so richtig zusammengefasst/vereinfacht habe!?

Als Lösung ist - [mm] \bruch{x}{x+1}+Cx [/mm] angegeben - doch hierauf komme ich irgendwie nicht. Könnt ihr mir da helfen?

Vielen Dank im Voraus

        
Bezug
DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Do 17.05.2018
Autor: fred97


> Bestimme für x > 0 die allgemeine Lösung der
> Differentialgleichung
>  
> [mm]y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}}[/mm]
>  Hallo,
>  
> hier einmal mein bisheriger Ansatz:
>  
> [mm]y'(x)-\bruch{y(x)}{x}=\bruch{x}{(x+1)^{2}}[/mm]
>  
> 1)
>  
> [mm]y'(x)-\bruch{y(x)}{x}=0[/mm]
>  
> [mm]h(x)=\integral[/mm] a(x) dx = [mm]\integral -\bruch{1}{x}[/mm] dx =
> -ln(x)+C
>  
> [mm]y_{h}(x)[/mm] = [mm]C*e^{-h(x)}[/mm] = [mm]C*e^{ln(x)}[/mm] = C*x
>  
> 2)
>  
> [mm]y_{s}(x)[/mm] = [mm]e^{-h(x)} \integral (b(x)*e^{h(x)})dx[/mm]
>  
> [mm]y_{s}(x)[/mm] = [mm]e^{ln(x)} \integral (\bruch{x}{(x+1)^{2}}*e^{-ln(x)})dx[/mm]
>  
> [mm]y_{s}(x)[/mm] = x [mm]\integral (\bruch{x}{(x+1)^{2}}*\bruch{1}{x})dx[/mm]
>  
> An dieser Stelle bin ich mir nun leider unsicher, ob ich so
> richtig zusammengefasst/vereinfacht habe!?
>  

Du kannst noch mehr  vereinfachen.

Im Integral kürze noch  ein  x raus.  Zu bestimmen hast Du dann  eine Stammfunktion von [mm] 1/(x+1)^2. [/mm]

Damit kommst du  dann auch  auf untenstehende Lösung.


> Als Lösung ist - [mm]\bruch{x}{x+1}+Cx[/mm] angegeben - doch
> hierauf komme ich irgendwie nicht. Könnt ihr mir da
> helfen?
>  
> Vielen Dank im Voraus


Bezug
                
Bezug
DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Do 17.05.2018
Autor: Dom_89

Hallo fred97,

hat alles geklappt !

Vielen Dank für die schnelle Hilfe

Viele Grüße

Dom_89

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9h 36m 11. Takota
DiffGlGew/Globaler Existenzsatz
Status vor 10h 57m 1. homerq
SVektoren/Raumwinkel errechnen
Status vor 14h 40m 6. leduart
DiffGlGew/Loesung DGL
Status vor 21h 57m 3. fred97
S8-10/Rationalisieren des Nenners
Status vor 1d 17h 56m 6. HJKweseleit
UNum/Skizzieren einer Menge
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]