matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL mit Ansatz Inhomogenität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Ansatz Inhomogenität
DGL mit Ansatz Inhomogenität < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Ansatz Inhomogenität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Fr 13.11.2009
Autor: brockerdocker

Aufgabe
[mm]y'-2y=(x+2)*exp(2x)[/mm]

Hallo,
ich soll für verschiedene DGLs die allgemeine Lösung mittels dem Ansatz vom Typ der Inhomogenität lösen.

Dazu habe ich von der obigen DGL den Partikulärteil: [mm](x+2)*exp(2x) [/mm]genommen. Mit diesem habe ich versucht eine Ansatzfunktion herzuleiten.

Im Skript steht:

Wenn g(x) wie folgt aussieht:
[mm]g(x) = exp(λx)*(a_1 \cos(bx) + a_2 \sin(bx))*\sum_{k=0}^{n} c_k*x^k[/mm]

dann ist [mm] y_p(x) [/mm] so zu wählen:

[mm]y_p(x) = exp(λx)*(a_1 \cos(bx) + a_2 \sin(bx))*\sum_{k=0}^{n-1} c_k*x^k + x^n[/mm]

In meinem Beispiel ist [mm]g(x)=(x+2)*exp(2x)[/mm]^=> n=1
=> [mm]y_p(x)=(c_0+x)*exp(2x)[/mm]

Leider muss aber [mm]y_p=x*(c_0 + c_1x)*exp(2x)[/mm] sein.

Ich verstehe dass nicht. Meiner Meinung nach müsste für diesen Ansatz n=2 sein. Außerdem darf doch nach obiger Formel vor dem höchsten x-Exponenten kein [mm] a_n [/mm] stehen?

Ich wäre für eine kurze Erklärung daher dankbar.


        
Bezug
DGL mit Ansatz Inhomogenität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Fr 13.11.2009
Autor: MathePower

Hallo brockerdocker,

> [mm]y'-2y=(x+2)*exp(2x)[/mm]
>  Hallo,
>  ich soll für verschiedene DGLs die allgemeine Lösung
> mittels dem Ansatz vom Typ der Inhomogenität lösen.
>  
> Dazu habe ich von der obigen DGL den Partikulärteil:
> [mm](x+2)*exp(2x) [/mm]genommen. Mit diesem habe ich versucht eine
> Ansatzfunktion herzuleiten.
>  
> Im Skript steht:
>  
> Wenn g(x) wie folgt aussieht:
>  [mm]g(x) = exp(λx)*(a_1 \cos(bx) + a_2 \sin(bx))*\sum_{k=0}^{n} c_k*x^k[/mm]
>  
> dann ist [mm]y_p(x)[/mm] so zu wählen:
>  
> [mm]y_p(x) = exp(λx)*(a_1 \cos(bx) + a_2 \sin(bx))*\sum_{k=0}^{n-1} c_k*x^k + x^n[/mm]
>  
> In meinem Beispiel ist [mm]g(x)=(x+2)*exp(2x)[/mm]^=> n=1
>  => [mm]y_p(x)=(c_0+x)*exp(2x)[/mm]

>  
> Leider muss aber [mm]y_p=x*(c_0 + c_1x)*exp(2x)[/mm] sein.
>  
> Ich verstehe dass nicht. Meiner Meinung nach müsste für
> diesen Ansatz n=2 sein. Außerdem darf doch nach obiger
> Formel vor dem höchsten x-Exponenten kein [mm]a_n[/mm] stehen?


Zunächst einmal ist der Ansatz entsprechend der Störfunktion zu wählen:

[mm]\left(c_{0}+c_{1}*x\right)*e^{2x}[/mm]

Ist die Störfunktion oder ein Glied von ihr zugleich Lösung der homogenen DGL

[mm]y'-2y=0[/mm]

so ist der Ansatz mit x zu multiplizieren.

Daher also

[mm]y_{p}\left(x\right)=x*\left(c_{0}+c_{1}*x\right)*e^{2x}[/mm]


>  
> Ich wäre für eine kurze Erklärung daher dankbar.

>


Gruss
MathePower  

Bezug
                
Bezug
DGL mit Ansatz Inhomogenität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 13.11.2009
Autor: brockerdocker

Vielen Dank für die schnelle Antwort!
Jetzt würde mich nur noch interessieren, was dann z.B. der Ansatz bei folgendem Störterm ist:
[mm]g(x)=(x^2+1)*exp(2x) DGL: y'-2y=(x^2+1)*exp(2x)[/mm]

Ist das dann [mm]y_p(x)=(a_0 x^2+a_1 x +a_2)*exp(2x)*x[/mm] ?
Muss man also trotzdem ein [mm] a_1 [/mm] x mitschreiben?

Und [mm]y'-2y=(x+1)[/mm] hat dann aber

[mm] y_p=(a_0+a_1 [/mm] x) als Lösung, oder?

Vielen Dank schon mal,
Viele Grüße brockerdocker

Bezug
                        
Bezug
DGL mit Ansatz Inhomogenität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Fr 13.11.2009
Autor: MathePower

Hallo brockerdocker,

> Vielen Dank für die schnelle Antwort!
> Jetzt würde mich nur noch interessieren, was dann z.B. der
> Ansatz bei folgendem Störterm ist:
>  [mm]g(x)=(x^2+1)*exp(2x) DGL: y'-2y=(x^2+1)*exp(2x)[/mm]
>  
> Ist das dann [mm]y_p(x)=(a_0 x^2+a_1 x +a_2)*exp(2x)*x[/mm] ?


Ja, das ist richtig. [ok]


>  Muss man also trotzdem ein [mm]a_1[/mm] x mitschreiben?
>  
> Und [mm]y'-2y=(x+1)[/mm] hat dann aber
>
> [mm]y_p=(a_0+a_1[/mm] x) als Lösung, oder?


Auch das stimmt. [ok]


>
> Vielen Dank schon mal,
>  Viele Grüße brockerdocker


Gruss
MathePower

Bezug
                                
Bezug
DGL mit Ansatz Inhomogenität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Fr 13.11.2009
Autor: brockerdocker

OK, dann denke ich habe ich das Prinzip verstanden. Vielen Dank nochmal,
gruß brockerdocker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]