matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL mit Potenzreihenansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Potenzreihenansatz
DGL mit Potenzreihenansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Potenzreihenansatz: Überprüfung
Status: (Frage) überfällig Status 
Datum: 21:58 Sa 11.11.2006
Autor: oeli1985

Aufgabe
Bestimmen sie mittels eines Potenzreihenansatzes die Lösung der DGL:

(x-1)y' - y + [mm] x^{3} [/mm] = 0

Hallo zusammen,

habe zum 1.Mal versucht eine DGL durch Potenzreihenansatz zu lösen und habe keine Ahnung, ob meine Lösung auch nur im Entferntesten richtig ist.

Meine Lösung

nach Umformung:

y'= [mm] \bruch{y- x^{3}}{x-1} [/mm]

dann definiere ich:

y(x)= [mm] \summe_{k=0}^{ \infty} a_{k} x^{k} [/mm] und dementsprechend y'(x)= [mm] \summe_{k=0}^{ \infty} a_{k}k x^{k-1} [/mm] = [mm] \summe_{k=1}^{ \infty} [/mm]  k [mm] a_{k} x^{k-1} [/mm]

nach einsetzen, umformen und anpassen der Indizes:

[mm] x^{3} [/mm] + [mm] \summe_{k=0}^{ \infty} [/mm]  (k+1) [mm] a_{k+1} x^{k+1} [/mm] = [mm] \summe_{k=0}^{ \infty} [/mm]  ((k+1) [mm] a_{k+1}+ a_{k}) x^{k} \Rightarrow a_{1}x+2 a_{2} x^{2}+3 a_{3} x^{3}+ x^{3}+ \summe_{k=3}^{ \infty} [/mm]  (k+1) [mm] a_{k+1} x^{k+1} [/mm] = ( [mm] a_{1}+ a_{0})+(2 a_{2}+ a_{1})x+(3 a_{3}+ a_{2}) x^{2}+(4 a_{4}+ a_{3}) x^{3}+ \summe_{k=4}^{ \infty} [/mm]  (k+1) [mm] a_{k+1}+ a_{k}) x^{k} \Rightarrow a_{2}= a_{3}=0 [/mm] und Fallunterscheidung (beim weiteren Koeffizientenvergleich)

1. [mm] x^{3} [/mm]

3 [mm] a_{3}-1 [/mm] = 4 [mm] a_{4}+ a_{3} \Rightarrow [/mm] ... [mm] \Rightarrow a_{4}= [/mm] - [mm] \bruch{1}{4} [/mm]

2. [mm] x^{k} [/mm] für k [mm] \in [/mm] {4,5,6,...}

(k+1) [mm] a_{k+1} [/mm] = (k+1) [mm] a_{k+1}+ a_{k} \Rightarrow a_{k}=0 [/mm]

somit:

y(x)= [mm] \summe_{k=0}^{ \infty} a_{k} x^{k}= a_{0}+ a_{1}x [/mm] - [mm] \bruch{1}{4} x^{4} [/mm]

Grundsätzlich richtig? Danke schon mal und Grüße, Patrick

        
Bezug
DGL mit Potenzreihenansatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 13.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]