matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL nicht global lösbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - DGL nicht global lösbar
DGL nicht global lösbar < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL nicht global lösbar: Aufgabe
Status: (Frage) überfällig Status 
Datum: 22:15 Do 21.11.2013
Autor: DudiPupan

Aufgabe
Zeigen Sie, dass keine auf ganz [mm] $\mathbb{R}$ [/mm] definierte Funktion gibt, die die Differentialgleichung [mm] $$x'(t)=2+((x(t))^4+\sin(x(t))$$ [/mm]
löst.

Hallo zusammen,

ich beschäftige mich derzeit mit der oben stehenden Aufgabe, komme aber einfach nicht weiter.
Mir fehlt einfach die richtige Idee das Problem anzugehen.

Ich würde mich freuen, wenn  mir jemand auf die Sprünge helfen könnte.

Vielen Dank schonmal

DudiPupan

        
Bezug
DGL nicht global lösbar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Do 21.11.2013
Autor: Marcel

Hallo,

> Zeigen Sie, dass keine auf ganz [mm]$\mathbb{R}$[/mm] definierte
> Funktion gibt, die die Differentialgleichung
> [mm]x'(t)=2+((x(t))^4+\sin(x(t))[/mm]
>  löst.

ich weiß nicht, ob das was bringt, aber nur mal rein "spaßeshalber" kann man
ja mal rechnen:
Nehmen wir an, [mm] $x=x(t)\,$ [/mm] wäre doch wie oben gefordert. Dann gilt

    [mm] $(x(t))^4=x'(t)-2-\sin(x(t))$ [/mm] für alle $t [mm] \in \IR\,.$ [/mm]

Daraus folgt

    [mm] $4(x(t))^3*x'(t)=x''(t)-\cos(x(t))*x'(t)$ [/mm] für alle $t [mm] \in \IR\,.$ [/mm]

(Insbesondere: Da ja [mm] $(x(t))^4$ [/mm] differenzierbar ist, ergibt sich durch die
obige Gleichheit auch - weil $x [mm] \mapsto [/mm] 2$ und $x [mm] \mapsto \sin(x(t))$ [/mm] differenzierbar
sind, dass dann [mm] $x\,$ [/mm] zweimal diff'bar ist!)

Vielleicht kann man das ja in die Ursprungsgleichung einsetzen - etwa nach
$x'(t)$ erst auflösen, und dann einsetzen (und wenn es dann noch keinen
ersichtlichen Widerspruch gibt, schauen, ob man den vielleicht
hinbekommt, wenn man "sowas" nur oft genug macht!)

P.S. Damit die Ausgangs-DGL überhaupt Sinn macht, muss eh [mm] $x\,$ [/mm] auf [mm] $\IR$ [/mm]
als diff'bar gefordert werden!

P.P.S. Keine Garantie, dass das wirklich auch zielführend ist. Es wäre nur
so mein erster Gedanke, um "naiv" an die Aufgabe ranzugehen!

Gruß,
  Marcel

Bezug
        
Bezug
DGL nicht global lösbar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 23.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]