matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDachprodukt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Dachprodukt
Dachprodukt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dachprodukt: Fehler
Status: (Frage) beantwortet Status 
Datum: 15:14 So 23.09.2007
Autor: Deuterinomium

Hi zusammen!

Wir haben in der Vorlesung das äußere Produkt definiert und dabei folgende Eigenschaft festgehalten:

[mm] f \in Alt^p(V), g \in Alt^k(V), : f \wedge g = (-1)^{pk}g \wedge f [/mm].
Insbesondere gilt: [mm] f \in Alt^p(V): f \wedge f = 0[/mm]

Aber die letzte Eigenschaft gilt doch nur für ungerade p oder ?
Denn nur dann gilt doch: [mm]f \in Alt^p(V): f \wedge f = (-1)^{p^2} f \wedge f \rightarrow f \wedge f = (-1) f \wedge f \rightarrow f \wedge f=0[/mm]

Gruß
Deuterinomium

        
Bezug
Dachprodukt: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 21:33 So 23.09.2007
Autor: felixf

Hallo Deuterinomium

> Wir haben in der Vorlesung das äußere Produkt definiert und
> dabei folgende Eigenschaft festgehalten:
>  
> [mm]f \in Alt^p(V), g \in Alt^k(V), : f \wedge g = (-1)^{pk}g \wedge f [/mm].
> Insbesondere gilt: [mm]f \in Alt^p(V): f \wedge f = 0[/mm]
>  
> Aber die letzte Eigenschaft gilt doch nur für ungerade p
> oder ?

Sie folgt nur fuer ungerades $p$ aus der Eigenschaft davor, da hast du Recht (also ohne weiteres Wissen ueber $Alt(V)$ und [mm] $\wedge$). [/mm] Fuer gerades $p$ gilt sie jedoch auch, nur folgt das aus etwas anderem.

Und zwar aus der Definition des alternierenden Produktes: zur Definition von [mm] $Alt^p(V)$ [/mm] nimmt man ja das $p$-fache Tensorprodukt von $V$ mit sich selbst und faktorisiert alle Produkte raus, in denen ein Faktor doppelt vorkommt. Wenn also $f$ von der Form [mm] $v_1 \wedge \dots \wedge v_p$ [/mm] ist, dann ist $f [mm] \wedge [/mm] f = [mm] v_1 \wedge \dots \wedge v_p \wedge v_1 \wedge \dots \wedge v_p [/mm] = [mm] (-1)^{p-1} v_1 \wedge v_1 \wedge v_2 \wedge \dots \wedge v_p \wedge v_2 \wedge \dots \wedge v_p [/mm] = 0$. Und ist $f = [mm] \sum_{i=1}^k f_i$ [/mm] mit [mm] $f_i \wedge f_i [/mm] = 0$, so ist $f [mm] \wedge [/mm] f = [mm] \sum_{i=1}^p \sum_{j=1}^p f_i \wedge f_j [/mm] = [mm] \sum_{i=1}^p f_i \wedge f_i [/mm] + [mm] \sum_{1 \le i < j \le k} (f_i \wedge f_j [/mm] + [mm] f_j \wedge f_i) [/mm] = 0$. Da jedes Element aus [mm] $Alt^p(V)$ [/mm] von der Form $f = [mm] \sum_{i=1}^k v_{i1} \wedge \dots \wedge v_{ip}$ [/mm] ist, folgt somit $f [mm] \wedge [/mm] f = 0$.

LG Felix


Bezug
                
Bezug
Dachprodukt: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 Di 25.09.2007
Autor: Deuterinomium

Danke!
Ist klar geworden!

Gruß
Deuterinomium

Bezug
                
Bezug
Dachprodukt: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:54 Mi 03.09.2008
Autor: Merle23

Also für gerades p gibt es auf []Mathworld ein Gegenbeispiel, also wo [mm]f \wedge f \not= 0[/mm] ist.

edit: Ich glaub ich hab deinen Fehler im Beweis gefunden. Und zwar im folgenden Schritt:

[mm]\sum_{i=1}^p f_i \wedge f_i + \sum_{1 \le i < j \le k} (f_i \wedge f_j + f_j \wedge f_i) = 0[/mm]

Wieso ist das dann Null? [mm]f_i \wedge f_j + f_j \wedge f_i[/mm] hebt sich im Falle i,j beide gerade nicht zu Null auf, sondern addiert sich einfach (so wie es bei dem Beispiel auf Mathworld der Fall ist).

Es bleibt also [mm]\sum_{1 \le i < j \le k} 2(f_i \wedge f_j)[/mm] übrig.

Bezug
                        
Bezug
Dachprodukt: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 17:31 Mi 03.09.2008
Autor: felixf

Hallo

> Also für gerades p gibt es auf
> []Mathworld
> ein Gegenbeispiel, also wo [mm]f \wedge f \not= 0[/mm] ist.

Oh, ja, da hast du Recht! Vielen Dank fuer den Hinweis!

> edit: Ich glaub ich hab deinen Fehler im Beweis gefunden.
> Und zwar im folgenden Schritt:
>  
> [mm]\sum_{i=1}^p f_i \wedge f_i + \sum_{1 \le i < j \le k} (f_i \wedge f_j + f_j \wedge f_i) = 0[/mm]
>  
> Wieso ist das dann Null? [mm]f_i \wedge f_j + f_j \wedge f_i[/mm]
> hebt sich im Falle i,j beide gerade nicht zu Null auf,
> sondern addiert sich einfach (so wie es bei dem Beispiel
> auf Mathworld der Fall ist).

Ich bin einfach von [mm] $f_i \wedge f_j [/mm] = [mm] -f_j \wedge f_i$ [/mm] ausgegangen, und nicht von [mm] $f_i \wedge f_j [/mm] = [mm] (-1)^{\deg f_i \cdot \deg \f_j} f_j \wedge f_i$... [/mm]

> Es bleibt also [mm]\sum_{1 \le i < j \le k} 2(f_i \wedge f_j)[/mm]
> übrig.

Nicht ganz: es bleibt [mm]\sum_{1 \le i < j \le k \atop \deg f_i \cdot \deg f_j \text{ gerade}} 2(f_i \wedge f_j)[/mm] uebrig :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]