matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikDarlehens-Zins
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Darlehens-Zins
Darlehens-Zins < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darlehens-Zins: Zins- / + Tilgungsanteil
Status: (Frage) beantwortet Status 
Datum: 14:50 Sa 14.06.2008
Autor: rob41

Aufgabe
Ein Darlehen von 200.000,- € wird mit einer monatlichen (am Monatsanfang) Rate von 1.100,- € über einen Zeitraum von 28 Jahren und 5 Monaten zurückgezahlt.
a) Wie hoch ist der prozentuale und absolute Zins- / und Tilgungsanteil in jedem Rückzahlungsjahr?
b) Wie hoch ist der Effektiv-/Nominalzins des Darlehens ?

Mein Versuch:
a)  28 J. + 5 M= 341 M
Zinsanteil: z
Tilgungsanteil: t

[mm] \bruch{1.100 * 541}{(z+t)} [/mm] = 200.000

Ich komme hier leider nicht weiter.
Herzlichen Dank für jede Hilfestellung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Darlehens-Zins: Tipp
Status: (Antwort) fertig Status 
Datum: 07:16 Mo 16.06.2008
Autor: Josef

Hallo rob41,

> Ein Darlehen von 200.000,- € wird mit einer monatlichen (am
> Monatsanfang) Rate von 1.100,- € über einen Zeitraum von 28
> Jahren und 5 Monaten zurückgezahlt.
>  a) Wie hoch ist der prozentuale und absolute Zins- / und
> Tilgungsanteil in jedem Rückzahlungsjahr?
>  b) Wie hoch ist der Effektiv-/Nominalzins des Darlehens ?
>  
> Mein Versuch:
>  a)  28 J. + 5 M= 341 M
>  Zinsanteil: z
>  Tilgungsanteil: t
>  
> [mm]\bruch{1.100 * 541}{(z+t)}[/mm] = 200.000
>  
> Ich komme hier leider nicht weiter.
> Herzlichen Dank für jede Hilfestellung.
>  


du musst erst einmal versuchen, den Prozentsatz zu ermitteln. Dies kannst du z.B. wie folgt erreichen:

1.100 = [mm] 200.000*q^{341} *\bruch{q-1}{q^{341}-1} [/mm]

q = etwa 1,00407...

p = etwa 5 % p.a.


Jetzt kannst du die Annuität ermitteln:

[mm] 200.000*\bruch{1,05^{28,4166..}*0,05}{1,05^{28,4166..}-1} [/mm]

A = 13.332,60


Nun eine Tilgungstabelle aufstellen:

200.000*0,05 = 10.000 (=Zinsen)

A-Z = T

13.332,60 - 10.000 = 3.332,60 (= Tilgung)

Verhältnisrechnung:

13.332,60 = 100 %
10.000,00 = 75 %
3.332,60 = 25 %

75 % von 5 % = 3,75 % Zinsen
25 % von 5 % = 1,25 % Tilgung


Viele Grüße
Josef

Bezug
                
Bezug
Darlehens-Zins: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 Mo 16.06.2008
Autor: rob41

Hallo Josef,

ganz herzlichen Dank für Deine Hilfe - das sieht sehr gut aus !
ich hätte damals wohl Mathe LK machen sollen ... ;)

'Gestattest' Du mir 3 Fragen ?
1) wie kommst Du im 1. Schritt von q auf p ?

2) warum ist die Annuität nicht einfach 12 x 1.100 = 13.200  ?
  es ist doch für die gesamte Laufzeit eine fixe Monatsrate v. 1.100,- (incl. Zins & Tilgung) angegeben

3) Zins- / und Tilgungsanteil in jedem Rückzahlungsjahr
200.000*0,05 = 10.000 (=Zinsen)
13.332,60 - 10.000 = 3.332,60 (= Tilgung)
dies gilt im 1. Jahr, in Excel kann ich die weiteren Rückzahlungsjahre rechnen, die Aufgabe ist damit gelöst.
interessieren würde mich eine FORMEL für den Zins- / und Tilgungsanteil in jedem Rückzahlungsjahr.

Viele Grüße
Rob

Bezug
                        
Bezug
Darlehens-Zins: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mo 16.06.2008
Autor: Josef

Hallo Rob,


>  1) wie kommst Du im 1. Schritt von q auf p ?
>  

monatlicher Zins ist umzurechnen auf Jahreszins:

[mm] 1,00407^{12}-1 [/mm] = 0,049948... = 0,05 *100 = 5 %



> 2) warum ist die Annuität nicht einfach 12 x 1.100 = 13.200
>  ?
>    es ist doch für die gesamte Laufzeit eine fixe
> Monatsrate v. 1.100,- (incl. Zins & Tilgung) angegeben

da hast du recht! Ich habe zu kompliziert gerechnet.

200.000*i = 13.200

i = 0,066


200.000*(0,05 + T) = 13.200

T = 0,016


>  
> 3) Zins- / und Tilgungsanteil in jedem Rückzahlungsjahr
>  200.000*0,05 = 10.000 (=Zinsen)
>  13.332,60 - 10.000 = 3.332,60 (= Tilgung)
>  dies gilt im 1. Jahr, in Excel kann ich die weiteren
> Rückzahlungsjahre rechnen, die Aufgabe ist damit gelöst.
>  interessieren würde mich eine FORMEL für den Zins- / und
> Tilgungsanteil in jedem Rückzahlungsjahr.
>  

Formel für
Zinsen im 2. Jahr:

[mm] Z_2 [/mm] = Annuität - [mm] \bruch{Annuität}{q^n}*q^1 [/mm]

Viele Grüße
Josef


Bezug
                                
Bezug
Darlehens-Zins: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Mo 16.06.2008
Autor: rob41

Hallo Josef,

noch mal ganz herzlichen Dank für Deine Hilfe und Erläuterung !
super.

Viele Grüße
Rob

Bezug
                                        
Bezug
Darlehens-Zins: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mo 16.06.2008
Autor: Josef

Hallo Rob,

>  
> noch mal ganz herzlichen Dank für Deine Hilfe und
> Erläuterung !
>  super.
>  

Gern geschehen!

Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]