matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenDarstellung einer reellen Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Darstellung einer reellen Zahl
Darstellung einer reellen Zahl < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung einer reellen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Di 16.05.2006
Autor: ps4c7

Aufgabe
Ich will zeigen, dass jede Zahl [mm] x\in[0,1] [/mm] eine Darstellung mit [mm] x=\summe_{n=1}^{\infty} 2^{-n} a_n [/mm] , [mm] a_n\in\{0,1\} [/mm] hat.

Dass dies der Fall ist, scheint mit logisch, da ja gilt  [mm] \summe_{n=1}^{\infty}2^{-n}=1 [/mm] gilt. Weiter besteht die Summe ja auch unendlich vielen Summanden, daher lässt sich auch jeder beliebige Zahl [mm] x\in[0,1] [/mm] darstellen. Aber wie packe ich das ganze in einen mathematischen Beweis?

Würde mich über jede Antwort freuen.

MfG Patrick

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: []Matheplanet

        
Bezug
Darstellung einer reellen Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Di 16.05.2006
Autor: MatthiasKr

Hallo Patrick,

die Frage ist aus meiner Sicht im MP-forum schon gut und erschöpfend beantwortet worden. Deshalb habe ich den Status zurückgesetzt.

VG
Matthias

Bezug
                
Bezug
Darstellung einer reellen Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 Di 16.05.2006
Autor: ps4c7

Oh sorry, hab ich erst gesehen, als ich schon gepostet hatte.
Entschuldigung nochmals. War keine Absicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]