matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDarstellungsmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Darstellungsmatrix
Darstellungsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 05.01.2010
Autor: blackylk

Aufgabe
Gegeben sei die lineare Abbildung f: [mm] \IR^3 \to \IR^3 [/mm]
[mm] \vektor{x_1 \\ x_2\\ x_3} \to \pmat{ 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 } *\vektor{x_1 \\ x_2\\ x_3} [/mm]

Berechnen Sie die Darstellungsmatrix von f bezüglich der Basis
[mm] \vektor{1 \\ 0\\ 0},\vektor{1 \\ 1\\ 1},\vektor{1 \\ 2\\ 3} [/mm]

Ich hab in Wiki ein Beispiel dazu gefunden, nur dort sind 2 Basen vorgegeben A und B.

In der Aufgabe hab ich nur 1 Basis mit 3 Vektoren. Damit ich weiter komme, muss ich irgendwie A rausbekommen. Ich weiß nur nicht wie. Wäre für jeden kleinen Tipp dankbar.

mfg

        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 05.01.2010
Autor: schachuzipus

Hallo blackylk,

> Gegeben sei die lineare Abbildung f: [mm]\IR^3 \to \IR^3[/mm]
> [mm]\vektor{x_1 \\ x_2\\ x_3} \to \pmat{ 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 } *\vektor{x_1 \\ x_2\\ x_3}[/mm]
>  
> Berechnen Sie die Darstellungsmatrix von f bezüglich der
> Basis
>  [mm]\vektor{1 \\ 0\\ 0},\vektor{1 \\ 1\\ 1},\vektor{1 \\ 2\\ 3}[/mm]
>  
> Ich hab in Wiki ein Beispiel dazu gefunden, nur dort sind 2
> Basen vorgegeben A und B.
>
> In der Aufgabe hab ich nur 1 Basis mit 3 Vektoren. Damit
> ich weiter komme, muss ich irgendwie A rausbekommen. Ich
> weiß nur nicht wie. Wäre für jeden kleinen Tipp
> dankbar.

Hier sind die Basen des Urbild- und des Bildraumes dieselben.

Bilde also die Basisvektoren ab mittels der Vorschrift und stelle die Bilder, die du dabei erhältst, als LK der gegebenen Basis dar.

Die Koeffizienten packe als Spalten in die gesuchte Darstellungsmatrix ...

>  
> mfg


Gruß

schachuzipus

Bezug
                
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Di 05.01.2010
Autor: blackylk

ah sry, seh grad das ich die Matrix falsch eingetippt habe, müsste so aussehen

[mm] \vektor{x_1 \\ x_2\\ x_3} \to \pmat{ 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 } \cdot{}\vektor{x_1 \\ x_2\\ x_3} [/mm]




Und jetzt kommt schon das nächste Problem:

[mm] f\vektor{1 \\ 0\\ 0}=\vektor{1 \\ 3\\ 5}=0* \vektor{1 \\ 0\\ 0}+(-1)* \vektor{1 \\ 1\\ 1}+2* \vektor{1 \\ 2\\ 3} [/mm]
[mm] f\vektor{1 \\1\\ 1}=\vektor{2 \\ 4\\ 6}=0* \vektor{1 \\ 0\\ 0}+0* \vektor{1 \\ 1\\ 1}+2* \vektor{1 \\ 2\\ 3} [/mm]

[mm] f\vektor{1 \\ 2\\ 3}=\vektor{3 \\ 5\\ 7}=0* \vektor{1 \\ 0\\ 0}+1* \vektor{1 \\ 1\\ 1}+2* \vektor{1 \\ 2\\ 3} [/mm]
ist die Matrix also
0 -1  2
0  0  2
0  1  3



> Hier sind die Basen des Urbild- und des Bildraumes
> dieselben.
>  
> Bilde also die Basisvektoren ab mittels der Vorschrift und
> stelle die Bilder, die du dabei erhältst, als LK der
> gegebenen Basis dar.
>  
> Die Koeffizienten packe als Spalten in die gesuchte
> Darstellungsmatrix ...
> Gruß
>  
> schachuzipus

Ich bin mir nicht sicher ob ich verstanden habe, was Sie meinen. War die Woche vor den Ferien Krank und hab die letzten beiden  Vorlesungen nicht besucht.
Ich hab es jetzt so wie in Wiki versucht unter der Annahme, das die Basen gleich sind.

Bezug
                        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Di 05.01.2010
Autor: schachuzipus

Hallo nochmal,

> ah sry, seh grad das ich die Matrix falsch eingetippt habe,
> müsste so aussehen
>  
> [mm]\vektor{x_1 \\ x_2\\ x_3} \to \pmat{ 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 } \cdot{}\vektor{x_1 \\ x_2\\ x_3}[/mm]

Macht nix, das Prozedere ist dasselbe ...

>
>
>
>
> Und jetzt kommt schon das nächste Problem:
>  
> [mm]f\vektor{1 \\ 0\\ 0}=\vektor{1 \\ 3\\ 5}=?* \vektor{1 \\ 0\\ 0}+?* \vektor{1 \\ 1\\ 1}+?* \vektor{1 \\ 2\\ 3}[/mm]
>  
> Das geht gar nicht auf.

Oh doch, das gibt ein LGS mit 3 Gleichungen in 3 Variablen [mm] $\lambda,\mu,\nu$: [/mm]

[mm] $\vektor{1\\3\\5}=\lambda\cdot{}\vektor{1\\0\\0}+\mu\cdot{}\vektor{1\\1\\1}+\nu\cdot{}\vektor{1\\2\\3}$ [/mm]

[mm] $\Rightarrow$ [/mm]

1) [mm] $\lambda+\mu+\nu=1$ [/mm]

2) [mm] $\mu+2\nu=3$ [/mm]

3) [mm] $\mu+3\nu=5$ [/mm]

Wenn du nun von der 3.Gleichung die 2.Gleichung abziehst, ergibt sich [mm] $\nu=2$ [/mm]

Damit (eingesetzt in 2) oder 3)): [mm] $\mu=-1$ [/mm] und schließlich [mm] $\lambda=0$ [/mm]

Probe: [mm] $0\cdot{}\vektor{1\\0\\0}+(-1)\cdot{}\vektor{1\\1\\1}+2\cdot{}\vektor{1\\2\\3}=\vektor{-1\\-1\\-1}+\vektor{2\\4\\6}=\vektor{1\\3\\5}$ [/mm]

Passt!

Die Koeffizienten [mm] $\lambda,\mu,\nu$ [/mm] stopfst du dann in die erste Spalte der Darstellungsmatrix.


>  
> Der nächste aber schon.
>  [mm]f\vektor{1 \\1\\ 1}=\vektor{2 \\ 4\\ 6}=0* \vektor{1 \\ 0\\ 0}+0* \vektor{1 \\ 1\\ 1}+2* \vektor{1 \\ 2\\ 3}[/mm]


>  
> [mm]f\vektor{1 \\ 2\\ 3}=\vektor{3 \\ 5\\ 7}=0* \vektor{1 \\ 0\\ 0}+1* \vektor{1 \\ 1\\ 1}+2* \vektor{1 \\ 2\\ 3}[/mm]

[notok]

Das stimmt beides nicht, du hast beide Bilder [mm] $f\vektor{1 \\1\\ 1}$ [/mm] und [mm] $f\vektor{1 \\ 2\\ 3}$ [/mm] falsch berechnet, damit sind auch die Koeffizienten in den LKen falsch.

Rechne nochmal nach bzw. vor ...

Schaue nochmal nach, wie die Matrixmultiplikation funktioniert ...

>
>
> > Hier sind die Basen des Urbild- und des Bildraumes
> > dieselben.
>  >  
> > Bilde also die Basisvektoren ab mittels der Vorschrift und
> > stelle die Bilder, die du dabei erhältst, als LK der
> > gegebenen Basis dar.
>  >  
> > Die Koeffizienten packe als Spalten in die gesuchte
> > Darstellungsmatrix ...
>  > Gruß

>  >  
> > schachuzipus
>
> Ich bin mir nicht sicher ob ich verstanden habe, was Sie
> meinen.

Ui, da komme ich mir [old] vor, hier sagen wir alle "du" zueinander ...

> War die Woche vor den Ferien Krank und hab die
> letzten beiden  Vorlesungen nicht besucht.
> Ich hab es jetzt so wie in Wiki versucht unter der Annahme,
> das die Basen gleich sind.



LG

schachuzipus


Bezug
                                
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 Di 05.01.2010
Autor: blackylk

Es funktioniert [prost] [happy]

hab da jetzt für die Matrix folgendes raus.
Das ist meine Matrix
0  0  0
-1  0  1
2   2  2

Die Matrixmultiplikation verfolgt mich schon ein leben Lang.

Und falls ich richtig multipliziert hab kommt ,das hier bei mir sowas raus

0  0  0
-1 0  6
2  6   12



danke nochmal :>

Bezug
                                        
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Di 05.01.2010
Autor: schachuzipus

Hallo nochmal,

also ich komme auf die Darstellungsmatrix:

[mm] $M=\pmat{0&0&0\\-1&0&2\\2&6&12}$ [/mm]

Vllt. schreibst du doch mal auf, was du für [mm] $f\vektor{1\\1\\1}$ [/mm] und [mm] $f\vektor{1\\2\\3}$ [/mm] raus hast ...

Gruß

schachuzipus

Bezug
                                                
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:15 Mi 06.01.2010
Autor: blackylk

[mm] f\vektor{1\\1\\1} [/mm] $  *  [mm] \pmat{ 1 & 2 & 3\\ 3 & 4 & 5 \\ 5 & 6 & 7 } [/mm]

= [mm] \vektor{6\\12\\18} [/mm]


[mm] f\vektor{1\\2\\3} [/mm]   *  [mm] \pmat{ 1 & 2 & 3\\ 3 & 4 & 5 \\ 5 & 6 & 7 } [/mm]

= [mm] \vektor{14\\26\\38} [/mm]

aufgelöst kommt dann auch wie du schon gesagt hast
$ [mm] M=\pmat{0&0&0\\-1&0&2\\2&6&12} [/mm] $ raus



Bezug
                                                        
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Mi 06.01.2010
Autor: Matze3001

Aufgabe
Sei [mm] M(2;\IR) [/mm] der [mm] \IR-Vektorraum [/mm] der 2x2-Matrizen mit Einträgen in [mm] \IR. [/mm] Gegeben seien die Matrizen

A= [mm] \pmat{ 1 & 2 \\ -1 & 3 } [/mm] und B= [mm] \pmat{ 2 & 1 \\ 0 & 4 }. [/mm]

(a) Zeigen Sie, dass die Abbildung
    L: [mm] M(2;\IR)\to M(2;\IR) [/mm]
        X   [mm] \to [/mm] AXB
    linear ist und bestimme die beschreibende Matrix bzgl.
    der Basis
    [mm] \{\pmat{ 1 & 0 \\ 0 & 0 },\pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & 0 \\ 1 & 0 },\pmat{ 0 & 0 \\ 0 & 1 }\}. [/mm]

(b)Berechne den Rang dieser Matrix.

Hier ist mir nicht ganz klar, was der Ausdruck "AXB" bedeutet. Ist damit die Multiplikation beider Matrizen A und B gemeint?

Die beschreibende Matrix bekomme ich doch dann raus, wenn ich die Matrix aus der Multiplikation beider Matrizen A und B (nennen wir diese einfach C) mit den Vektoren aus der Basis multipliziere, dann die Einzelergebnisse  als Linearkombination darstelle und [mm] \lambda1,\lambda2, \lambda3 [/mm] und [mm] \lambda4 [/mm] sind dann meine Einträge der Darstellungsmatrix oder?

Bezug
                                                                
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mi 06.01.2010
Autor: Teufel

Hi und willkommen hier!

Du solltest nächstes mal am besten einen eigenen Faden eröffnen, damit das alles etwas geordneter ist (obwohl die Themen natürlich zusammenpassen).

Aber zu deiner Frage:
Das X ist nur die Matrix, die in die Funktion gestopft wird.

Also [mm] L(\pmat{ 1 & 0 \\ 0 & 0 })=A*\pmat{ 1 & 0 \\ 0 & 0 }*B. [/mm]

Genau, und für die darstellende Matrix bildest du die Matrizen aus der Basis ab, und stellst das Ergebnis wieder aus den 4 Basismatrizen dar. Und die Koeffizienten, die du dann immer erhältst, trägst du als Spalte in die Darstellungsmatrix ein.

[anon] Teufel



Bezug
                                                                        
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Mi 06.01.2010
Autor: Matze3001

Dass die Matrizen A, X und B multipliziert werden ist dann klar und die weiteren Schritte sind dann auch klar! Aber wie genau kommst du denn darauf, dass du die Matrix
X = [mm] \pmat{ 1 & 0 \\ 0 & 0 } [/mm] einsetzen musst?

Bezug
                                                                                
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 06.01.2010
Autor: Teufel

Hi.

Das X ist kein Multiplikationszeichen, sondern eben die Matrix, die abgebildet werden soll.

Man könnte die Funktion auch als $L(X)=A*X*B$ schreiben.

[anon] Teufel

Bezug
                                                                                        
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Do 07.01.2010
Autor: Matze3001

Das ist mir ofensichtlich klar, aber wie komme ich an die Matrix X? Ohne zu wissen, welche diese ist, kann ich schlecht AXB ausmultiplizieren oder?

Bezug
                                                                                                
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Do 07.01.2010
Autor: Arcesius

Hallo

X ist irgendeine 2x2-Matrix mit Einträgen in [mm] \IR.. [/mm] wenn du willst, kannst du auch

X = [mm] \pmat{1 & \pi \\ -2.91 & \bruch{1}{\wurzel{11}}} [/mm]

nehmen... ich denke aber, dass Teufel's Beispiel einfacher war (ausserdem benutzt er gerade eine der Basismatrizen, die gegeben sind.. das brauchst du für die Darstellungsmatrix!).


Du hast ja eine Abbildung, die du auf eine bestimmte Eigenschaft überprüfen musst.. X ist in deiner Aufgabe das Element, das abgebildet wird (deine Variabel...)


Ist es klarer? :)

Grüsse, Amaro

Bezug
                                                                                                        
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Do 07.01.2010
Autor: Matze3001

Ok. D.h. also nichts weiter, wie das ich am Besten immer eine Matrix mit den Einträgen aus der Standardbasis nehmen kann, da diese sowieso in der Abbildung enthalten ist? Dann muss ich nur noch multiplizieren und die Darstellungsmatrix und den Rang bestimmen?

Bezug
                                                                                                                
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Do 07.01.2010
Autor: leduart

Hallo
Du musst doch erst zeigen, dass die Abb. linear ist. Schreib mal auf, was das bedeutet, und dann wie du es beweist.
Gruss leduart

Bezug
                                                                                                                        
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Do 07.01.2010
Autor: Matze3001

Also ich habe das jetzt so gemacht,nach den Regeln der Linearität:

L(AXB) = (L(A))X(L(B)) = L(A) X L(B)

[mm] L(\alpha(AXB) [/mm] = [mm] (L(\alpha A))X(L(\alpha [/mm] B)) = [mm] L(\alpha A)XL(\alpha [/mm] B) = [mm] \alpha [/mm] L(A)X [mm] \alpha [/mm] L(B)

ist das korrekt?

Bezug
                                                                                                                                
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Fr 08.01.2010
Autor: Arcesius

Hallo

> Also ich habe das jetzt so gemacht,nach den Regeln der
> Linearität:
>  
> L(AXB) = (L(A))X(L(B)) = L(A) X L(B)
>  
> [mm]L(\alpha(AXB)[/mm] = [mm](L(\alpha A))X(L(\alpha[/mm] B)) = [mm]L(\alpha A)XL(\alpha[/mm]
> B) = [mm]\alpha[/mm] L(A)X [mm]\alpha[/mm] L(B)
>  
> ist das korrekt?

Nein.

Deine Abbildung ist ja nicht AXB [mm] \mapsto [/mm] L(AXB), sondern:

L: [mm] M(2x2,\IR) \rightarrow M(2x2,\IR), [/mm] X [mm] \mapsto [/mm] AXB

Also...

L(X+Y) = ... ?

[mm] L(\alpha [/mm] X) = ...?


(Y ist auch [mm] \in M(2x2,\IR)) [/mm]

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]