matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenDarstellungsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Darstellungsmatrix
Darstellungsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:01 Mi 22.06.2011
Autor: shadee

Hallo,

es geht um die Darstellungsmatrix (keine konkrete Aufgabe). Sei F eine lineare Abbildung von V nach W. Sei weiterhin A eine Basis von V und B eine Basis von W. Die Matrix [mm] M_A^B(F) [/mm] ist die Darstellungsmatrix von F, da F(v) = M*v [mm] \forall [/mm] v [mm] \in [/mm] V.

Ich weiß wie man die Darstellungsmatrix berechnet. Was ich aber nicht so recht verstanden habe ist die Bezeichnung. Was hat das ganze mit der Basis von W zu tun und warum steht die dort oben? Wie ändert sich dann also die Darstellungsmatrix wenn ich eine andere Basis von W nehme? Ein kurzs Beispiel zur Erklärung wäre gut.

Bin für jeden Tipp dankbar. Grüße shadee

        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 22.06.2011
Autor: mrkva

es geht um die Darstellungsmatrix (keine konkrete Aufgabe). Sei F eine lineare Abbildung von V nach W. Sei weiterhin A eine Basis von V und B eine Basis von W. Die Matrix $ [mm] M_A^B(F) [/mm] $ ist die Darstellungsmatrix von F, da F(v) = M*v $ [mm] \forall [/mm] $ v $ [mm] \in [/mm] $  V.


soweit ich die Notation richtig kenne muss die basis von V oben stehen und die Basis von W unten (bin aber nicht ganz sicher)

Ich weiß wie man die Darstellungsmatrix berechnet. Was ich aber nicht so recht verstanden habe ist die Bezeichnung. Was hat das ganze mit der Basis von W zu tun und warum steht die dort oben?


Wenn du die darstellende Matrix berechnest verwendest du doch die Basis A und B, oder wie rechnest du die Matrix aus???
Die Basis muss man angeben, da für verschiedene Basen ja ganz verschiedene Matrizen rauskommen.

Wie ändert sich dann also die Darstellungsmatrix wenn ich eine andere Basis von W nehme? Ein kurzs Beispiel zur Erklärung wäre gut.


Dafür gibt es Transformationsmatrizen [mm] $T_{BB}^B$ [/mm] mit der du zwischen z.B. der Basis B und BB tauschen kannst

ich hoffe das hilft dir weiter sonst frag noch mal genauer nach


Bezug
                
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Do 23.06.2011
Autor: shadee

Eben nicht. Meines Wissens nach berechnet sich [mm] M_A^B [/mm] durch [mm] \pmat{F(a_1)& F(a_2) &...& F(a_n)}. [/mm] Ich denke mal hier ist mein Fehler, da eben die Basis von W gar nicht auftaucht. Kann sein, dass A und B in der Matrix vertauscht werden, bin mir da auch nicht so sicher und verwechsel das mit Regelmäßigkeit. Sehe da eben noch keinen Sinn dahinter, vllt auch genau deswegen.

Bezug
                        
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Sa 25.06.2011
Autor: mrkva

Hallo shadee,

sorry das ich erst so spät zurück schreibe, bin nicht jeden Tag im Forum.

Laut Gerd Fischer ist die Basis von V oben und die Basis von W unten (wenn F: V->W). kann natürlich sein das andere Autoren eine andere Notation haben. Sicher ist aber das [mm]M_B^A[/mm] nicht das selbe ist wie [mm]M_A^B[/mm].

Meines Wissens nach berechnet sich [mm] M_A^B [/mm] durch [mm] \pmat{F(a_1)& F(a_2) &...& F(a_n)}. [/mm] Ich denke mal hier ist mein Fehler, da eben die Basis von W gar nicht auftaucht.


Richtig da ist dein Problem, für [mm] $M_B^A$ [/mm] musst du noch $F(a1)$ durch W darstellen und dann die Koeffizienten in die erste Spalte der darstellenden Matrix schreiben. Für die zweite Spalte F(a2) durch W darstellen.... Für die n-te Spalte F(an) durch W darstellen und die Koeffizienten in die n-te Spalte schreiben.
Damit ist [mm] $M_B^A$ [/mm] abhängig von der gewählten Basis A und B (sogar die Reihenfolge der Basiselemente spielt eine Rolle).

Schönen Gruß




[/quote]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]