matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieDedekindsche Psi-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Dedekindsche Psi-Funktion
Dedekindsche Psi-Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dedekindsche Psi-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Sa 23.06.2018
Autor: mathelernender

Aufgabe
Für n > 2 ist [mm] \psi(n) [/mm] gerade

Hallo,

ich möchte zeigen, dass die Dedekindsche [mm] \psi [/mm] - Funktion für n > 2 gerade ist. Die Definition ist wie folgt:

[mm] \psi(n) [/mm] = 1 für n = 1, für n > 1 ist [mm] \psi(n) [/mm] = n * [mm] \produkt_{p prim, p|n}^{} [/mm] (1 + [mm] \bruch{1}{p}) [/mm]

Ich habe zunächst ein paar Werte eingesetzt und geschaut, ob man dort eine Regelmäßigkeit oder was anderes nützliches sieht.

Was mir soweit aufgefallen ist:
- die Ergebnisse sind ganzzahlig, weil man beim Bruch immer einen der Primfaktoren rauskürzt und somit der Bruch per Konstruktion immer ganzzahlig ist.

Dann hört es allerdings fast auf. Ich habe überlegt, ob es sinnvoll ist, ob man die Anzahl der Primfaktoren für n bestimmt und darüber was rausfinden kann. Also ob man eine gerade oder ungerade Anzahl an PF hat. Aber das scheint bisher nicht zielführend gewesen zu sein. Hat jemand eventuell einen Tipp?

Viele Grüße,
mathelernender

        
Bezug
Dedekindsche Psi-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 23.06.2018
Autor: Diophant

Hallo,

> Für n > 2 ist [mm]\psi(n)[/mm] gerade
> Hallo,

>

> ich möchte zeigen, dass die Dedekindsche [mm]\psi[/mm] - Funktion
> für n > 2 gerade ist. Die Definition ist wie folgt:

>

> [mm]\psi(n)[/mm] = 1 für n = 1, für n > 1 ist [mm]\psi(n)[/mm] = n *
> [mm]\produkt_{p prim, p|n}^{}[/mm] (1 + [mm]\bruch{1}{p})[/mm]

>

> Ich habe zunächst ein paar Werte eingesetzt und geschaut,
> ob man dort eine Regelmäßigkeit oder was anderes
> nützliches sieht.

>

> Was mir soweit aufgefallen ist:
> - die Ergebnisse sind ganzzahlig, weil man beim Bruch
> immer einen der Primfaktoren rauskürzt und somit der Bruch
> per Konstruktion immer ganzzahlig ist.

So trivial es ist, es ist schonmal ein wichtiger Anfang.

> Dann hört es allerdings fast auf. Ich habe überlegt, ob
> es sinnvoll ist, ob man die Anzahl der Primfaktoren für n
> bestimmt und darüber was rausfinden kann. Also ob man eine
> gerade oder ungerade Anzahl an PF hat. Aber das scheint
> bisher nicht zielführend gewesen zu sein. Hat jemand
> eventuell einen Tipp?

Primzahlen haben entweder den Wert 2 oder sie sind ungerade. Weiter ist

[mm]1+ \frac{1}{p}= \frac{p+1}{p}[/mm]

Das bedeutet ganz einfach, dass für alle Primzahlen größer 2 der Zähler des entsprechenden Faktors gerade ist. Das zusammen mit deiner Erkenntnis ergibt dann die Behauptung.


Gruß, Diophant

Bezug
                
Bezug
Dedekindsche Psi-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 23.06.2018
Autor: mathelernender

Hi,

ich versuche das mal zu papier zu bringen:

Sei n > 2.
n kann in Produkt von PF zerlegt werden:

n = [mm] p_{1}^{\alpha_1} [/mm] * ... *  [mm] p_{r}^{\alpha_r} [/mm]

Nun gilt:

[mm] \psi(n) [/mm] = [mm] \produkt_{p_{i}, 1 \le i \le r}^{} [/mm] (1 + [mm] \bruch{1}{p}) [/mm]

Betrachte 1 + [mm] \bruch{1}{p}: [/mm]

Für p = 2 ist 1 + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{3}{2} [/mm]
Multipliziert man [mm] \bruch{3}{2} [/mm] mit n gilt: [mm] \bruch{(3n)}{2} [/mm] = [mm] 3*n_0 [/mm] mit [mm] n_0 [/mm] = [mm] \bruch{(n)}{2} [/mm] (hier will ich zum Ausdruck bringen, dass ich die 2 aus n rausgekürzt habe...) bzw. der Primfaktor ist aus n verschwunden. Dieser Bruch ist ungerade.

für p > 2 ist 1 + [mm] \bruch{1}{p} [/mm] = [mm] \bruch{1 + p }{p} [/mm] und der Zähler gerade. Multipliziert man das Produkt der Brüche mit n wird jeweils der entschprechende Primfaktor rausgekürzt und es bleibt eine gerade Zahl stehen. Dann haben wir ein Produkt aus geraden Zahlen welches wieder gerade ist.

Insgesamt hat man, falls der Primfaktor 2 in n enthalten ist, ein Produkt aus einer ungeraden Zahl und geraden. Dieses Produkt ist wieder gerade. Es folgt die Behauptung.

Ist das nachvollziehbar / korrekt?

Bezug
                        
Bezug
Dedekindsche Psi-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 23.06.2018
Autor: Diophant

Hallo,

> ich versuche das mal zu papier zu bringen:

>

> Sei n > 2.
> n kann in Produkt von PF zerlegt werden:

>

> n = [mm]p_{1}^{\alpha_1}[/mm] * ... * [mm]p_{r}^{\alpha_r}[/mm]

>

Ja, aber das muss man wohl in diesem Zusammenhang nicht extra erwähnen, würde ich meinen.

> Nun gilt:

>

> [mm]\psi(n)[/mm] = [mm]\produkt_{p_{i}, 1 \le i \le r}^{}[/mm] (1 +
> [mm]\bruch{1}{p})[/mm]

>

Das stimmt in zweierlei Hinsicht nicht:

- du hast den Faktor n vor dem Produkt vergessen
- du suggerierst hier durch die Schreibweise, dass alle Primzahlen, die kleinergleich dem größten Primteiler von n sind, als entsprechender Faktor im Produkt vorkommen. Das stimmt ja aber eben nicht, sondern es kommen nur die vor, für welche in deiner anfänglichen PFZ von n

[mm]\alpha_i>0[/mm]

ist.

> Betrachte 1 + [mm]\bruch{1}{p}:[/mm]

>

> Für p = 2 ist 1 + [mm]\bruch{1}{2}[/mm] = [mm]\bruch{3}{2}[/mm]
> Multipliziert man [mm]\bruch{3}{2}[/mm] mit n gilt: [mm]\bruch{(3n)}{2}[/mm]
> = [mm]3*n_0[/mm] mit [mm]n_0[/mm] = [mm]\bruch{(n)}{2}[/mm] (hier will ich zum
> Ausdruck bringen, dass ich die 2 aus n rausgekürzt
> habe...) bzw. der Primfaktor ist aus n verschwunden. Dieser
> Bruch ist ungerade.

Das ist ein arges Durcheinander. Erstens kannst du ja nicht annehmen, dass n gerade ist, also fällt die 2 i.a. nicht unbedingt durch Kürzen mit dem entsprechenden PF von n heraus, sondern mit einem der Zähler im Produkt. Das ist doch aber alles unnötig, da n>2 betrachtet wird und es hier völlig ausreicht zu erwähnen, dass 3 der einzige ungerade Zähler im Produkt ist (Brüche können nicht gerade oder ungerade sein).

> für p > 2 ist 1 + [mm]\bruch{1}{p}[/mm] = [mm]\bruch{1 + p }{p}[/mm]

Ne, das ist immer so. :-)

> und der
> Zähler gerade.

Ja, genau, das ist wichtig, wie ich schon geschrieben habe.

> Multipliziert man das Produkt der Brüche
> mit n wird jeweils der entschprechende Primfaktor
> rausgekürzt und es bleibt eine gerade Zahl stehen. Dann
> haben wir ein Produkt aus geraden Zahlen welches wieder
> gerade ist.

Das ist so leidlich richtig, aber sehr unglücklich formuliert. Ich versuche mich mal daran:

Für n>2 treten im Produkt bis auf eine Ausnahme nur Brüche mit geradem Zähler auf. Da sämtliche Nenner per Definition n teilen, kürzen sich alle Nenner heraus und daher ist der Funktionswert ganz. Da das Produkt der Zähler gerade Faktoren enthält, ist der Funktionswert damit insbesondere auch gerade.

> Insgesamt hat man, falls der Primfaktor 2 in n enthalten
> ist, ein Produkt aus einer ungeraden Zahl und geraden.
> Dieses Produkt ist wieder gerade. Es folgt die Behauptung.

Wie gesagt: die Fallunterscheidung, ob n gerade ist oder nicht, ist völlig unnötig.


Gruß, Diophant

Bezug
                                
Bezug
Dedekindsche Psi-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Sa 23.06.2018
Autor: mathelernender

Du hast recht, danke für die Korrekturen. Ist zwar immer nicht so schön zu lesen, aber zeigt mir, dass ich nicht wirklich gut mit den Dingen umgehe. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]