Def. einer Funktion als Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:54 Fr 22.04.2011 | Autor: | yonca |
Hallo,
ich habe einmal eine ganz allgemeine Frage bezüglich der Definition von Funkionen mittels unendlichen Reihen.
Ist es richtig, dass Reihen nur an den Stellen eine Funktion definieren können, an denen sie konvergieren?
Ich meine an den Stellen, wo sie divergieren würden die Funktionswerte dann ja gegen unendlich gehen. Aber kann denn ein Funktionswert nicht auch unendlich sein?
Vielen Dank schon mal!
Gruß Yonca
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:06 Fr 22.04.2011 | Autor: | leduart |
Hallo
Deine aussage ist richtig. In der Schule sagt man zwar noch 1/x "ist" für x=0 _ înfty. oder tan(x) für [mm] x=\pi/2 [/mm] ist [mm] \infty.
[/mm]
das ist aber nur eine schlecht Kurzform dafür dass [mm]\limes_{x\rightarrow\ipi/2} tan(x)\textrm{ bestimmt divergiert}[/mm].
aber tanx ist für [mm] x=\pi/2 [/mm] nicht definiert, sondern nur auf dem offenen Intervall [mm] (-\pi/2,+\pi/2) [/mm] der Konvergenzradius der tan-Reihe ist [mm] \pi/2, [/mm] und nur innerhalb ist die fkt damit definiert.
gruss leduart
|
|
|
|