matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDefinitheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Definitheit
Definitheit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 15.07.2013
Autor: Batista88

Hallo,
ich möchte diese Hesse Matrix auf Definitheit prüfen.

Hess f(x,y)= [mm] \pmat{ 2 & 0 \\ 0 & -2 } [/mm]

Das ich hier die Eigenvektoren ablesen kann und dadurch folgere das die Matrix indefinit ist, ist mir klar.

Ich möchte aber diese Aufgabe mit dem Skalarprodukt lösen
d.h

[mm] <\vektor{x \\ y},\pmat{ 2 & 0 \\ 0 & -2 }\vektor{x \\ y}> [/mm]
= [mm] <\vektor{x \\ y},\vektor{2x \\ -2y}> [/mm] = [mm] 2x^2 -2y^2 [/mm]

Laut lösung folgt daraus [mm] \vektor{x \\ y}= \vektor{1 \\ 2} [/mm] und
[mm] \vektor{x \\ y}= \vektor{2 \\ 1} [/mm]

Wie kommt man auf diese [mm] \vektor{x \\ y}? [/mm]

MfG
Batista



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Mo 15.07.2013
Autor: schachuzipus

Hallo Batista88,

> Hallo,
> ich möchte diese Hesse Matrix auf Definitheit prüfen.

>

> Hess f(x,y)= [mm]\pmat{ 2 & 0 \\ 0 & -2 }[/mm]

>

> Das ich hier die Eigenvektoren ablesen kann und dadurch
> folgere das die Matrix indefinit ist, ist mir klar.

>

> Ich möchte aber diese Aufgabe mit dem Skalarprodukt
> lösen
> d.h

>

> [mm]<\vektor{x \\ y},\pmat{ 2 & 0 \\ 0 & -2 }\vektor{x \\ y}>[/mm]

>

> = [mm]<\vektor{x \\ y},\vektor{2x \\ -2y}>[/mm] = [mm]2x^2 -2y^2[/mm]

>

> Laut lösung folgt daraus [mm]\vektor{x \\ y}= \vektor{1 \\ 2}[/mm]
> und
> [mm]\vektor{x \\ y}= \vektor{2 \\ 1}[/mm]

"folgt daraus" passt nicht ...

>

> Wie kommt man auf diese [mm]\vektor{x \\ y}?[/mm]

Das sind 2 Vektoren [mm](\neq \vektor{0\\0})[/mm], die einmal <0 und einmal >0 liefern, damit ist die Matrix indefinit

>

> MfG
> Batista

>
>
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
                
Bezug
Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Mo 15.07.2013
Autor: Batista88

Hallo schachuzipus,

Also ich kann die Vektoren selber wählen  also könnte ich auch den vektor= [mm] \vektor{ 3\\ 4} [/mm] wählen?
[mm] \vektor{ 2\\ 2} [/mm] darf ich z.b. nicht wählen, oder?

Gruß
Batista
  

Bezug
                        
Bezug
Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mo 15.07.2013
Autor: fred97


> Hallo schachuzipus,
>  
> Also ich kann die Vektoren selber wählen

Eine symmetrische Matrix A  heißt indefinit [mm] \gdw [/mm]  es ex. Vektoren u und v mit:

  <u,Au> > 0 und <v,Av> <0

Wenn Du das nachweisen willst, mußt Du Dir geeignete Vektoren suchen.

FRED



>  also könnte ich
> auch den vektor= [mm]\vektor{ 3\\ 4}[/mm] wählen?
>  [mm]\vektor{ 2\\ 2}[/mm] darf ich z.b. nicht wählen, oder?
>  
> Gruß
>  Batista
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]