Definition Grenzwert < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:14 Sa 03.12.2011 | Autor: | Gerad |
Hallo,
blöde Frage aber ich will es einfach verstehn :/
Ist [mm] (a_n)_{n\in\N} [/mm] eine Folge reeller Zahlen, so ist die Zahl [mm] a\in\R [/mm] der Grenzwert dieser Folge und die Folge konvergiert gegen a, falls für jedes ε > 0 in dem Intervall (a − ε,a + ε) um a ab einem gewissen Index alle Glieder innerhalb und nur endlich viele Glieder der Folge [mm] (a_n)_{n\in\N} [/mm] außerhalb liegen. (Definition gemäß wikipedia)
Ich versteh soweit alles außer was jetzt genau das ε ist, was es aussagt und wieso man dieses ε nimmt... könnte mir jemand den Zusammenhang kurz erklären, wenn es möglich wäre mit einfachen Worten =)
Vielen Dank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:42 Sa 03.12.2011 | Autor: | notinX |
Hallo,
> Hallo,
>
> blöde Frage aber ich will es einfach verstehn :/
>
> Ist [mm](a_n)_{n\in\N}[/mm] eine Folge reeller Zahlen, so ist die
> Zahl [mm]a\in\R[/mm] der Grenzwert dieser Folge und die Folge
> konvergiert gegen a, falls für jedes ε > 0 in dem
> Intervall (a − ε,a + ε) um a ab einem gewissen Index
> alle Glieder innerhalb und nur endlich viele Glieder der
> Folge [mm](a_n)_{n\in\N}[/mm] außerhalb liegen. (Definition gemäß
> wikipedia)
>
> Ich versteh soweit alles außer was jetzt genau das ε ist,
> was es aussagt und wieso man dieses ε nimmt... könnte mir
> jemand den Zusammenhang kurz erklären, wenn es möglich
> wäre mit einfachen Worten =)
>
> Vielen Dank
das [mm] $\varepsilon$ [/mm] ist eine beliebige reelle Zahl größer 0. Man könnte es auch [mm] $\phi$, $\zeta$, [/mm] oder $q$ nennen. Es ist aber üblich es mit [mm] $\varepsilon$ [/mm] zu bezeichnen. In der Mathematik wird [mm] $\varepsilon$ [/mm] oft verwendet um Variablen zu kennzeichnen, die beliebig klein sein können.
Das bedeutet, dass ab einem bestimmten Index alle Folgenglieder innerhalb der sogenannten [mm] $\varepsilon$-Umgebung [/mm] um den Grenzwert liegen. Das heißt, die Folgenglieder "sammeln" sich immer näher um den Grenzwert und mach keine großen Abweichungen mehr davon.
Siehe hier
Gruß,
notinX
|
|
|
|