Definition geordnetes n-Tupel < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:28 Mo 01.05.2017 | Autor: | gfm |
Hallo zusammen!
Ich arbeite gerade Ebbinghaus, "Einführung in die Mengenlehre" durch und bin an der Stelle, an der das geordnete Paar und seine Erweiterung auf n-Tupel behandelt wird.
Er schreibt, dass die Definition des geordneten Paar [mm] (a,b) :=F(a,b) [/mm] mit einer 2-stelligen Operation [mm] F [/mm] nur die Eigenschaft haben braucht, dass aus [mm] F(x,y)=F(a,b) [/mm] folgt, dass [mm] a=x [/mm] und [mm] b=y [/mm]. Und so folgt er Kuratowski und definiert [mm] (a,b):=\{\{a\},\{a,b\}\} [/mm]. Soweit so gut. Er bemerkt dass, wenn [mm] a\in A [/mm] und [mm] b\in B [/mm] gilt, [mm] (a,b)\in \mathcal{P}(\mathcal{P}(A\cup B)) [/mm] gilt.
Als Erweiterung auf n-Tupel gibt er an ([mm] x_j\in X_j [/mm]):
[mm] (x_1):= x_1 [/mm]
[mm] (x_1,...x_n):=((x_1,...x_{n-1}), x_n) [/mm]
Außer dem Umstand, dass jetzt das Enthaltensein in [mm] \mathcal{P}(\mathcal{P}(X_1\cup X_2\cup ... \cup X_n)) [/mm] nicht mehr außer für $n=2$ gilt, werden die Mengenausdrücke für $n>2$ schnell sehr unübersichtlich.
Warum definiert man nicht [mm] $(x_1, x_2, [/mm] ..., [mm] x_n):=\{\{x_1\}, \{x_1, x_2\}, ..., \{x_1, ..., x_n\}\}$? [/mm] Diese Definition erfüllt die grundlegende Eigenschaft, dass die Gleichheit des n-Tupels äquivalent zur Gleichheit der einzelnen Komponenten ist. Jedes n-Tupel ist aus [mm] \mathcal{P}(\mathcal{P}(X_1\cup X_2\cup ... \cup X_n)) [/mm] eine Verallgemeinerung auf abzählbar undendliche Tupel liegt auf der Hand und wahrscheinlich auch auf beliebige Familien.
Was meint Ihr?
LG und vielen Dank im Voraus
gfm
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:41 Mo 01.05.2017 | Autor: | gfm |
Ich habe meinen Fehler erkannt. Ihr braucht nicht antworten. LG gfm
|
|
|
|