matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesDefinitionsbereich
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Definitionsbereich
Definitionsbereich < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 So 09.12.2007
Autor: bunnydeluxe13

Aufgabe
Bestimmen Sie den maximalen Definitionsbereich der Funktion f.

a.) f(x) = 1  b.)f(x) = [mm] 1/p^3 [/mm]  c.) f(x) = [mm] x/(x-2)^3 [/mm]  d.) f(m) = [mm] 4\wurzel{m} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Eine Hilfe wäre nett =)

Danke im Vorraus,
Lg Eli.

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 So 09.12.2007
Autor: Tyskie84

Hallo

Weisst du was der Definitionsberecih aussagt???

Du nimmst dir einfach den Definitionsbereich der reellen Zahlen [mm] \IR [/mm] und musst dann für deine gegebenen Funktionen wenn nötig einschränkungen machen.

Als Beispiel: [mm] \bruch{1}{x-1} [/mm] Der Definitionsbereich ist: [mm] DB_{f}=\IR [/mm] \ {1} (oder ganz formal aufgeschrieben [mm] DB_{f}= [/mm] {x [mm] \in \IR [/mm]  | x [mm] \not= [/mm] 1})  das bedeutet dass man für x alle reellen Zahlen einsetzten darf bis auf die 1 denn man darf ja durch 0 nicht dividieren. Versuch es mal für deine funktionen :)

Gruß



Bezug
                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 So 09.12.2007
Autor: bunnydeluxe13

Hallo,

also zb jetzt bei

f(x) = [mm] -x^4 [/mm] wäre der Def. Bereich D= R / {0}
oder wie ?!

weil da würde ja rauskommen - 0 ^ 4 = 0 ?!

und wenn ich einsetzen würde zb 2

wäre es - 2 ^4 = - 16 ?!

__________________

oder bei  x / (x - 2 ) ^ 3 was wäre denn da der def. bereich?

Bezug
                        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 So 09.12.2007
Autor: Tyskie84


> Hallo,
>  
> also zb jetzt bei
>
> f(x) = [mm]-x^4[/mm] wäre der Def. Bereich D= R / {0}
> oder wie ?!

NEIN. Da gibt es doch keinen eingeschränkten bereich. du darfst doch alles einseten was du willst also ist [mm] DB_{f}= \IR [/mm]

>


>  
> oder bei  x / (x - 2 ) ^ 3 was wäre denn da der def.
> bereich?

Bei brüchen ist das folgenermaßen. Der Nenner darf NIEMALS null werden also berechne die Nullstellen im Nenner und die Nullstellen die du heraus bekommst darfst du nicht einseten und ist somit dein eingeschränkter definitionsbereich

Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]