matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenDefinitionsbereich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Definitionsbereich
Definitionsbereich < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 11:53 Mo 31.01.2011
Autor: tomtom10

Aufgabe
Gegeben sei eine reelle, differenzierbare Funktion [mm] f(x)=\bruch{sin^2(\pi x)}{2x^2} [/mm]

Wie kann es sein, dass

gelten kann: Df = [-2,2]  

und nicht Df = [-2,2] [mm] \backslash \{0\} [/mm]

kann mir Jemand auf die Sprünge helfen ?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Mo 31.01.2011
Autor: M.Rex

Hallo

Die Eigentliche Definitionslücke bei x=0 ist hebbar, denn auch [mm] \sin(\pi\cdot0^{2})=0. [/mm]

Also kannst du wenn du f(0) passend definierst, die Funktion an dieser Stelle stetig fortsetzen.

Marius

Bezug
        
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Mo 31.01.2011
Autor: tomtom10

Wäre der nächste Schritt für eine Angabe von f(0) dann:


[mm] \limes_{x->0} \bruch{sin^2(\pi x)}{2x^2} [/mm] mit L'Hopital ?

Bezug
                
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 31.01.2011
Autor: schachuzipus

Hallo tomtom10,


> Wäre der nächste Schritt für eine Angabe von f(0) dann:
>  
>
> [mm]\limes_{x->0} \bruch{sin^2(\pi x)}{2x^2}[/mm] mit L'Hopital ?

Jo, das ist ne gute Idee - und das gleich zweimal ... ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]