Dem Rand beliebig nahe kommen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 17:14 Di 26.04.2005 | Autor: | Cardmaker |
Hallo,
vielleicht kann mir jemand helfen. Ich habe eine Frage zu einer Definition und komme nicht so recht weiter.
Gegeben ist eine Funktion y(x) definiert auf [xo,a) und eine offene Menge D (Teilmenge [mm] R^2) [/mm] mit (x,y(x)) [mm] \in [/mm] D. Nun geht es um die Definition, dass diese Funktion dem Rand von D beliebig nahe kommt.
Es wurde definiert: Dem Rand von D beliebig nahe kommen heißt:
1, a = Unendlich: Die Lsg. y(x) existiert für alle x mit x [mm] \ge [/mm] xo
2, a < Unendlich: lim x->b- (sup|y(x)|) ; die Lösung wird unendlich
3, a < Unendlich: lim x->b- (inf ( d((xn,y(xn)) ; Dabei bedeutet d((xn,y(xn)),Rand von D) den Abstand des Punktes (x,y(x)) vom Rand von D.
Meine Frage ist nun - Was bedeutet ganz genau lim x->b- (sup|y(x)|) (das x->-b muss eigentlich unter dem limes stehen)? Ich weiss (nach Definition, dass lim x->b- (f(x)) = c bedeutet, dass für alle Folgen {xn} mit xn->b und xn<b gilt, dass f(xn)->c für n-> [mm] \infty. [/mm] Soweit klar. Nur was bedeutet dann sup |y(x)| dahinter. Das Supremum dieser Funktion liefert doch immer denselben Wert, oder sehe ich das falsch. Damit müsste doch eine konstante Folge entstehen, oder? Nur dann kann ich doch die Folge weglassen. Ich hab diese Definition in 2 unabhängigen Büchern über das Lösen von Dgln gefunden (zur globalen Lsg. einer Dgl.) und ich glaube nicht, dass in beiden derselbe Fehler gemacht wurde. Was mir auch schon eingefallen ist, dass es sich hier um den limes superior handeln könnte, doch der ist doch nur für Folgen definiert und nicht für Funktionen. Ich hoffe mir kann jemand helfen, ich grüble schon ne ganz Weile, komme aber auf keinen grünen Zweig.
Vielen Dank schonmal
Gruß
Marco
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:27 Mi 27.04.2005 | Autor: | Marc |
Hallo Cardmaker,
> vielleicht kann mir jemand helfen. Ich habe eine Frage zu
> einer Definition und komme nicht so recht weiter.
>
> Gegeben ist eine Funktion y(x) definiert auf [xo,a) und
> eine offene Menge D (Teilmenge [mm]R^2)[/mm] mit (x,y(x)) [mm]\in[/mm] D. Nun
> geht es um die Definition, dass diese Funktion dem Rand von
> D beliebig nahe kommt.
>
> Es wurde definiert: Dem Rand von D beliebig nahe kommen
> heißt:
>
> 1, a = Unendlich: Die Lsg. y(x) existiert für alle x mit x
> [mm]\ge[/mm] xo
> 2, a < Unendlich: lim x->b- (sup|y(x)|) ; die Lösung wird
> unendlich
> 3, a < Unendlich: lim x->b- (inf ( d((xn,y(xn)) ; Dabei
> bedeutet d((xn,y(xn)),Rand von D) den Abstand des Punktes
> (x,y(x)) vom Rand von D.
Hier könnte es sich lohnen, das angebotene Formelsatzsystem zu benutzen.
Weitere Fragen:
i. Von welcher "Lösung" ist hier die Rede?
ii. Was bedeuten plötzlich [mm] $x_n$ [/mm] und [mm] $y_n$?
[/mm]
iii. Aus den drei Fällen kann ich nicht erkennen, was es nun heißt, dem Rand von D beliebig nahe zu kommen. In den Fällen 2. und 3. fehlt doch eine Aussage über die Ausdrücke wie z.B. "lim x->b- (sup|y(x)|) ". Das liest sich für mich wie "Eine Funktion ist stetig, wenn [mm] $x^2$."
[/mm]
iv. In 3. benutzt du [mm] $d(\cdot)$, [/mm] es wird aber im darauffolgenden Satz eine Funktion [mm] $d(\cdot,\cdot)$, [/mm] also ein zweistelle Funktion erklärt.
Viele Grüße,
Marc
|
|
|
|