matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenDeterminante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Abbildungen und Matrizen" - Determinante
Determinante < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Sa 12.01.2019
Autor: rubi

Hallo zusammen,

für eine 3 x 3 - Matrix A gelte det(A) = 2.
Nun soll man [mm] det(2*A^{-1}) [/mm] und [mm] det((2*A^{-1})) [/mm] berechnen.

In beiden Fällen habe ich so gerechnet:
[mm] det(A^{-1}) [/mm] = 1/2.
Der Faktor 2 wird mit [mm] 2^3 [/mm] vor die Determinante gezogen, so dass sich
[mm] det(2*A^{-1}) [/mm] = [mm] 2^3*0,5 [/mm] = 4 ergibt.
Das Ergebnis scheint jedoch falsch zu sein.

Bei der zweiten Determinante erhalte ich das gleiche, weil ich durch die zusätzliche Klammer keinen Unterschied zwischen den Determinanten erkenne. Aber auch hier ist die 4 scheinbar falsch.

Wo liegt mein Denkfehler ?

Vielen Dank für eure Antworten.

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.




        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Sa 12.01.2019
Autor: fred97


> Hallo zusammen,
>
> für eine 3 x 3 - Matrix A gelte det(A) = 2.
> Nun soll man [mm]det(2*A^{-1})[/mm] und [mm]det((2*A^{-1}))[/mm] berechnen.
>  
> In beiden Fällen habe ich so gerechnet:
> [mm]det(A^{-1})[/mm] = 1/2.
> Der Faktor 2 wird mit [mm]2^3[/mm] vor die Determinante gezogen, so
> dass sich
>  [mm]det(2*A^{-1})[/mm] = [mm]2^3*0,5[/mm] = 4 ergibt.
> Das Ergebnis scheint jedoch falsch zu sein.


Ich sehe keinen Fehler.  Wer sagt denn  etwas anderes?

>  
> Bei der zweiten Determinante erhalte ich das gleiche, weil
> ich durch die zusätzliche Klammer keinen Unterschied
> zwischen den Determinanten erkenne.

Sollst Du  vielleicht die Determinante von [mm] (2A)^{-1} [/mm] berechnen?



Aber auch hier ist die

> 4 scheinbar falsch.
>
> Wo liegt mein Denkfehler ?
>  
> Vielen Dank für eure Antworten.
>
> Viele Grüße
>  Rubi
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]