matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDeterminante
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Determinante
Determinante < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 30.12.2006
Autor: Thomas85

Hallo
Ich hänge grad mal wieder..
an folgender AUfgabe:

Zeigen Sie: Für jede schiefsymmetrische Matrix A mit ungeradem n gilt det(A)=0 .
Ich hab versucht das mit vollständiger Induktion zu zeigen aber kriege den Induktionsschluss nicht hin.
Habe bisher gezeigt dass die Diagonale [mm] a_{ii}=0 [/mm] sein muss und [mm] a_{ij}=-a_{ji} [/mm] gilt.

hoffe jmd hilft mir

mgf thomas



        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Sa 30.12.2006
Autor: ullim

Hi,

für eine (nxn) Matrix A gilt für alle [mm] a\in \IR [/mm]

[mm] det(a*A)=a^n*det(A) [/mm] und es gilt für jede (nxn) Matrix A

[mm] det(A)=det(A^T) [/mm]

Da für eine schiefsymetrische Matrix A

[mm] A=-A^T [/mm] gilt, folgt

[mm] det(A)=(-1)^n*det(A). [/mm] Falls n ungerade ist,

folgt [mm] (-1)^n=-1 [/mm] also det(A)=-det(A),

also det(A)=0

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]