matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikDeterminante -Säkulargleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - Determinante -Säkulargleichung
Determinante -Säkulargleichung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante -Säkulargleichung: Korrektheit
Status: (Frage) beantwortet Status 
Datum: 21:07 Mo 23.02.2009
Autor: murmel

Hallo, ich habe mir im Dreizler/ Lüdde die Sekulärgleichung angesehen und habe ein Problem bezüglich der Lösung der Determinante:

[Dateianhang nicht öffentlich]

Ist dies korrekt?

Mir drängt sich der Gedanke auf, dass ein Teil (der zweite Teil der Determinantenlösung fehlt! Der dritte Teil wird ja Null!

zweiter Teil:
[mm]-k^2 * \left( 2k - m * \omega^2 \right)[/mm]


Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Determinante -Säkulargleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 23.02.2009
Autor: leduart

Hallo
es fehlt nichts, dein "zweiter Teil" ist bis auf den Faktor 2 und das Vorzeichen richtig.
der erste Teil hat auch so nen Teil, dadurch das [mm] -2k^2 [/mm] in der zweiten Klammer.
Einfach brav ausrechnen und zusammenfassen.
Gruss leduart

Bezug
        
Bezug
Determinante -Säkulargleichung: Zu schnell geklickt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mo 23.02.2009
Autor: murmel

Sorry!

Bezug
        
Bezug
Determinante -Säkulargleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 24.02.2009
Autor: murmel

[Dateianhang nicht öffentlich]

Hallo, ich habe nun verstanden wie man im entsprechenden Beispiel (Bild oben, Dreizler, Lüdde) die Säkulargleichung aufstellt.

Allerdings verstehe ich gar nicht wie man aus ihr die Eigenwerte ermittelt. Bei einem "normalen" Polynom dritten Grades würde ich einfach eine Polynomdivision durchführen und so schrittweise reduzieren, dann evtl pq-Formel für quad. Gl.

Aber hier sehe ich nicht wie ich nach Omega aufzulösen habe! Ich habe es mal umgestellt, also bin den Weg rückwärts gegangen:

[mm]\omega_1 = \wurzel{\left(2-\wurzel{2}\right)*\bruch{k}{m}} \gdw \omega_1^2 = \left(2-\wurzel{2}\right)*\bruch{k}{m} \gdw 2k - m * \omega_1^2 = k* \wurzel{2}[/mm]

Dann steht genau das dort, was schon in der Determinante steht, bis auf [mm]k \wurzel{2}[/mm]

Ok, wenn ich mir die kubische Gleichung so angucke und den Teil in der eckigen Klammer nach Ansatz f. die quadratische Gleichung löse, komme ich (zufällig?) auf [mm]k \wurzel{2}[/mm]. Macht das Sinn? Eher nicht.



Kann man dies aus der LAGRANGE-Funktion entnehmen?

Und wie kann ich daraus die Eigenvektoren ermitteln?
Im Buch selbst steht zum Bilden der Eigenvektoren ein Gleichungssystem bestehend aus drei Gleichungen. Die erste und die letzte bestehen nur aus zwei Gliedern, während in der zweiten Gl. alle drei a_µ vorkommen. Das Gl.-System ist homogen(?), alle Gleichungen auf der rechten Seite sind Null. Wie löse ich das sinnvoll?

Ich bin irgendwie überfordert...


Für eine verständliche Erklärung wäre ich sehr dankbar!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Determinante -Säkulargleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Di 24.02.2009
Autor: leduart

Hallo
Die char. Gleichung zu loesen ist doch leicht, einfach die 2 Klammern einzeln 0 setzen
Eigenvektoren gehorchen der Gl
[mm] Ax=\lambda*x [/mm]
also [mm] (A-\lambda*I)*x=0 [/mm]
(x =vektor)
das ist ne homogenes GS was du einfach loesen musst.
nur dein [mm] \lambda [/mm] ist eben [mm] m\omega^2 [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]