matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante Dreiecksform...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - Determinante Dreiecksform...
Determinante Dreiecksform... < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante Dreiecksform...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Sa 24.02.2007
Autor: hase-hh

Aufgabe
Berechnen Sie die Werte für b [mm] \in [/mm] R, für welche det(A)=0 gilt.

A = [mm] \pmat{ -1 & -2 &-3 & 0 \\ 1 & 2 & b-4& 1-b \\ 2& 4& 6& b\\ 5& b+9& 16& 2} [/mm]

moin,

tschö. ich habe diese aufgabe auf zwei verschiedene arten gelöst, die leider nicht zum selben ergebnis führen -> ???


a) Matrix in Dreiecksform bringen und determinante berechnen:

A = [mm] \pmat{ -1 & -2 &-3 & 0 \\ 0 & b-1 & 1& 2 \\ 0& 0& b-7& 1-b\\ 0& 0& 0& b} [/mm]

det(A)= [mm] -b*(b^2 [/mm] -7b-b+7)

[mm] 0=-b*(b^2 [/mm] -8b +7)      => [mm] b_{0}=0 [/mm]

[mm] b_{1/2}= [/mm] 4 [mm] \pm \wurzel{16-7} [/mm]

[mm] b_{1}=1 [/mm]

[mm] b_{2}=7 [/mm]


b) ohne Dreiecksumformung, gleich determinante berechnen:

det(A)=-24 -10b(b-4) -6(1-b)(b+9)+0 -0 -(-6(1-b)(b+9) -(-32b) -(-24)

[mm] 0=-10b^2 [/mm] +72b

0=b(-10b+72)

[mm] b_{0}=0 [/mm]

[mm] b_{1}=-7,2 [/mm]  

???

sehr merkwürdig!

danke und gruß
wolfgang



        
Bezug
Determinante Dreiecksform...: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Sa 24.02.2007
Autor: Event_Horizon

Hallo!

Zum zweiten Fall schreibst du nicht genau, wie du die Determinante berechnet hast, aber ich glaube, ich weiß, was du gemacht hast: Du bist die Diagonalen durchgegangen, richtig?

Hier liegt dein Fehler, denn diese Methode funktioniert NUR bei 3x3-Matrizen! Sie funktioniert noch nicht mal bei 2x2, auch wenn es so aussieht: Bei 3x3 hast du je drei parallele Diagonalen, demnach solltest du bei 2x2-Matrizen beim gleichen Verfahren je zwei Diagonalen haben - Aber da wird jeweils nur eine verwendet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]