matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenDeterminante bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Determinante bestimmen
Determinante bestimmen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:47 Di 23.01.2007
Autor: Blueevan

Aufgabe
Für n [mm] \in\ [/mm] IN sei die folgende matrix A [mm] \in [/mm] Mn,n [mm] (\IR) [/mm] gegeben:
[mm] \pmat{ 1 & 2 & ... & n-1 n \\ 2 & 3 & ... & n & 0 \\ ... & ... & ... & ... \\ n-1 & n & ... & .... & 0 \\ n & 0 & ... & ... & 0 } [/mm] , d.h. [mm] aij=\begin{cases} i+j-1, & \mbox{für } \mbox{ i+j\len+1} \\ 0 & \mbox{sonst } \end{cases} [/mm]

Hallo!
Ich verstehe diese Aufgabe nicht ganz. Kann man die Matrix nicht einfach transponieren, dann ist sie ja schon auf Dreiecksform und die Determinante ist [mm] n^{n}? [/mm]
Ich hab eine Musterlösung dafür und laut der ist det A = [mm] (-1)^{\bruch{n}{2}}n^{n} [/mm] für n gerade und [mm] (-1)^{\bruch{n-1}{2}}n^{n} [/mm] für n ungerade.
Wie kommt man auf das [mm] (-1)^{...}? [/mm] Ich dachte das hat man nur wenn man nach einer Zeile/Spalte entwickelt.

Danke für die Hilfe!

        
Bezug
Determinante bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Di 23.01.2007
Autor: statler

Guten Tag!

> Für n [mm]\in\[/mm] IN sei die folgende matrix A [mm]\in[/mm] Mn,n [mm](\IR)[/mm]
> gegeben:
>  [mm]\pmat{ 1 & 2 & ... & n-1 & n \\ 2 & 3 & ... & n & 0 \\ ... & ... & ... & ... \\ n-1 & n & ... & .... & 0 \\ n & 0 & ... & ... & 0 }[/mm]
> , d.h. [mm]aij=\begin{cases} i+j-1, & \mbox{für } \mbox{ i+j\len+1} \\ 0 & \mbox{sonst } \end{cases}[/mm]

>  Ich verstehe diese Aufgabe nicht ganz. Kann man die Matrix
> nicht einfach transponieren, dann ist sie ja schon auf
> Dreiecksform und die Determinante ist [mm]n^{n}?[/mm]

'transponieren' heißt doch 'an der Hauptdiagonalen spiegeln' und dabei ändert sich nix, das Ding ist symmetrisch.

>  Ich hab eine Musterlösung dafür und laut der ist det A =
> [mm](-1)^{\bruch{n}{2}}n^{n}[/mm] für n gerade und
> [mm](-1)^{\bruch{n-1}{2}}n^{n}[/mm] für n ungerade.
>  Wie kommt man auf das [mm](-1)^{...}?[/mm] Ich dachte das hat man
> nur wenn man nach einer Zeile/Spalte entwickelt.

Die -1 kommt doch auch ins Geschäft, wenn ich 2 Zeilen (oder Spalten) vertausche. Aber wie mache ich durch Zeilentauschen aus der gegebenen Matrix eine vorschriftsmäßige Dreiecksmatrix? Ich vertausche die 1. und die letzte Zeile, dann die 2. und die vorletzte usw. Für gerades n geht das auf, d. h. es bleibt keine Zeile am Platz, für ungerades n bleibt die mittlere, wo sie ist. Bei jeder Tauschaktion wird die Determinante mit -1 multipliziert, und das gibt das gewünschte Resultat.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Determinante bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Di 23.01.2007
Autor: Blueevan

Oh danke schön :)
Lol ich hab ziemlich komisch gedacht :D
Das mit den Zeilen hat ich ganz vergessen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]